TO: Members of the Board of Trustees
FROM: Adriana D. Barrera, Interim Chancellor
DATE: January 8, 2013
SUBJECT: BOARD LETTER FOR JANUARY 15, 2014 MEETING

Board Meeting Location
Next week's Board meeting will be held at the Educational Services Center. The meeting times and locations are as follows:

<table>
<thead>
<tr>
<th>Meetings</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislative & Public Affairs Committee Meeting</td>
<td>12:00 p.m. - 1:00 p.m.</td>
<td>ESC – Board Room</td>
</tr>
<tr>
<td>Break</td>
<td>1:00 p.m. - 1:15 p.m.</td>
<td></td>
</tr>
<tr>
<td>Ad Hoc Committee Meeting on Adult Education & Workforce Development</td>
<td>1:15 p.m. - 2:15 p.m.</td>
<td>ESC – Board Room</td>
</tr>
<tr>
<td>Break</td>
<td>2:15 p.m. - 2:30 p.m.</td>
<td></td>
</tr>
<tr>
<td>Budget and Finance Committee Meeting</td>
<td>2:30 p.m. - 3:30 p.m.</td>
<td>ESC – Board Room</td>
</tr>
<tr>
<td>Convene for Public Session</td>
<td>3:30 p.m.</td>
<td>ESC – Board Room</td>
</tr>
<tr>
<td>Recess to Closed Session</td>
<td>Immediately Following</td>
<td>ESC – Hearing</td>
</tr>
<tr>
<td>Second Public Session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legislative & Public Affairs Committee Meeting (Svonkin, Pearlman, Santiago)
The committee will meet from 12:00 p.m. to 1:00 p.m. in the ESC – Board Room. For the committee's agenda, refer to Attachment A.

Ad Hoc Committee on Adult Education & Workforce Development Meeting (Eng, Svonkin, Moreno)
The committee will meet from 1:15 p.m. to 2:15 p.m. in the ESC – Board Room. For the committee's agenda, refer to Attachment B.

Budget and Finance Committee Meeting (Svonkin, Moreno, Eng)
The committee will meet from 2:30 p.m. to 3:30 p.m. in the ESC – Board Room. For the committee's agenda, refer to Attachment C.

Agenda Format
Under Reports from the Chancellor, the following will take place:

- Reports from the Chancellor regarding District activities or pending issues
Confidential Matters
The attached correspondence is confidential and should not be shared with other persons.

- **Office of General Counsel**
 - Enclosed for your review is background information pertaining to District-related litigation matters. *(Refer to Attachment D)*
 - Enclosed for your review is background information pertaining to Bond-related litigation matters. *(Refer to Attachment E)*
 - Enclosed for your review is an update pertaining to the status on personnel actions. *(Refer to Attachment F)*
 - Enclosed for your review is an update pertaining to complaints of discrimination/harassment. *(Refer to Attachment G)*

- **Business Services**
 - Enclosed for your review is information pertaining two settlements. *(Refer to Attachment H)*

- **Human Resources** – Enclosed for your review is information pertaining to two disciplinary actions. *Due to its size, this document will be sent via U.S. mail.*

Other Matters

- **Chancellor’s Office**
 - Enclosed for your information is a response to an inquiry regarding the selection process for the District’s legal panel. *(Refer to Attachment I)*

- **Facilities Planning and Development**
 - Enclosed for your review is the West Los Angeles College Master Plan Update and the Addendum to the 2010 Final Supplemental Environmental Impact Report *(Refer to Attachment J)*

Please let me know should you have any questions regarding the meeting.
To: Board of Trustees
From: Adriana Barrera
Date: January 6, 2014
Subject: Selection Process for Legal Panel

In response to an inquiry regarding the selection process for the District's legal panel, Ms. Camille Goulet (General Counsel) provided the following summary.

A Request for Proposals (RFP) was advertised by Contracts and notice was sent to 22 Bar Associations.

The RFP was divided into Class 1 and Class 2 panels. Class 1 is personal injury and core District matters, and Class 2 is for the areas supervised by Facilities Planning and Development. The Class 1 committee included Marvin Martinez, President; Michael Allen, Vice President of Academic Affairs for Mission; Leila Menzies, Vice President of Administrative Services who supervises the Risk Management unit; Ann Tomlinson, Vice President of Administrative Services from Harbor; and, the four attorneys from the Office of General Counsel (OGC).

The process, which was specified in the RFP, was as follows: Review and score written proposals, including a quantitative measure for fees. The top scoring firms were then given a performance assessment score based either on an interview or on the written performance evaluations of their previous work for the District. Notices of Intent to Award were issued in December for the Class 1 panel and no bid protests were filed.

The top scorers were then selected for the Class 1 panel. One firm which submitted a late proposal is only going to be allowed to continue as counsel on existing matters, and is not eligible for other assignments. The new Class 1 panel includes six firms new to the District and one firm that has not represented the District recently.

Should you require additional information, please let me know.
MEMO

Date: January 3, 2014

To: Board of Trustees

From: James O'Reilly
Chief Facilities Executive

RE: January 15, 2014 Board Meeting: West Los Angeles College Master Plan Update

Please find attached the West Los Angeles College 2013 Facilities Master Plan Update and the Addendum to the 2010 Final Supplemental Environmental Impact Report for your review. These documents have been prepared to recognize the proposed revisions and reductions to projects included in West's 2009 Facilities Master Plan.

These documents are in support of two resolutions for your consideration on the January 15 board report related to West's master plan update and environmental impact report addendum.

Please feel free to call me at (213) 891-2048 if you have any questions.

C: Adriana Barrera, interim chancellor
Nabil Abu-Ghazaleh, president, West Los Angeles College
Thomas Hall, director, facilities planning and development
Terri Mestas, director, LACCD bond program management office
Steve Sharr, CPM director, West Los Angeles College
MEMO

Date: January 3, 2014

To: Board of Trustees

From: James O'Reilly
Chief Facilities Executive

RE: January 15, 2014 Board Meeting: West Los Angeles College Master Plan Update

Please find attached the West Los Angeles College 2013 Facilities Master Plan Update and the Addendum to the 2010 Final Supplemental Environmental Impact Report for your review. These documents have been prepared to recognize the proposed revisions and reductions to projects included in West's 2009 Facilities Master Plan.

These documents are in support of two resolutions for your consideration on the January 15 board report related to West's master plan update and environmental impact report addendum.

Please feel free to call me at (213) 891-2048 if you have any questions.

C: Adriana Barrera, interim chancellor
Nabil Abu-Ghazaleh, president, West Los Angeles College
Thomas Hall, director, facilities planning and development
Terri Mestas, director, LACCD bond program management office
Steve Sharr, CPM director, West Los Angeles College
WEST LOS ANGELES COLLEGE
2013 MODIFICATIONS
WEST LOS ANGELES COLLEGE MASTER PLAN

ADDENDUM
2010 FINAL SUPPLEMENTAL ENVIRONMENTAL IMPACT REPORT

State Clearinghouse No. 2004051112

West Los Angeles College
9000 S. Overland Avenue
Culver City, CA 90230
Steve Sharr
310-202-2022

Prepared by:
Sirius Environmental

December 2013
WEST LOS ANGELES COLLEGE
2013 FACILITIES MASTER PLAN MODIFICATIONS
ADDENDUM TO THE 2010 FINAL SEIR

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose of Addendum</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Regulatory Background</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Incorporation by Reference</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Summary of Effects</td>
<td>4</td>
</tr>
<tr>
<td>2.0 PROJECT DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Background/Location</td>
<td>5</td>
</tr>
<tr>
<td>2.2 West Los Angeles College Facilities Master Plan (2005, 2010, 2013)</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Purpose of the Proposed Project</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Student Enrollment and Campus Use</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Discretionary Approvals</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Schedule</td>
<td>22</td>
</tr>
<tr>
<td>3.0 ENVIRONMENTAL ANALYSES</td>
<td>23</td>
</tr>
<tr>
<td>4.0 CONCLUSION</td>
<td>47</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>48</td>
</tr>
<tr>
<td>6.0 LIST OF PREPARERS</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2</td>
<td>West Los Angeles College Campus Building Areas (2005, 2010 and 2013)</td>
<td>9</td>
</tr>
<tr>
<td>2-3</td>
<td>West Los Angeles College Lease Arrangements</td>
<td>21</td>
</tr>
<tr>
<td>3-1</td>
<td>2010 Master Plan Peak Day Construction Emissions</td>
<td>28</td>
</tr>
<tr>
<td>3-2</td>
<td>Construction Equipment Noise Levels (For Purposes of Illustration)</td>
<td>40</td>
</tr>
<tr>
<td>3-3</td>
<td>Construction Noise and Estimated Construction Noise in the Vicinity of an Active Construction Site (For Purposes of Illustration)</td>
<td>41</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Project Location</td>
<td>11</td>
</tr>
<tr>
<td>2-2</td>
<td>2003 Existing Conditions</td>
<td>12</td>
</tr>
<tr>
<td>2-3</td>
<td>2005 Campus Master Plan, Conceptual Design</td>
<td>13</td>
</tr>
<tr>
<td>2-4</td>
<td>2010 Campus Master Plan, Conceptual Design</td>
<td>14</td>
</tr>
<tr>
<td>2-5</td>
<td>2013 Campus Master Plan, Conceptual Design</td>
<td>15</td>
</tr>
<tr>
<td>2-6</td>
<td>2013 Parking Plan</td>
<td>16</td>
</tr>
<tr>
<td>2-7</td>
<td>2013 Vehicular Travel Plan</td>
<td>17</td>
</tr>
<tr>
<td>2-8</td>
<td>2013 Master Plan Construction Staging and Sound Walls</td>
<td>18</td>
</tr>
<tr>
<td>3-1</td>
<td>Sound Wall Effectiveness Test</td>
<td>42</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Purpose of the Addendum

The purpose of this Addendum is to evaluate and document the environmental effects associated with minor modifications to the previously approved West Los Angeles College (WLAC) Facilities Master Plan (2010 Master Plan).

A Facilities Master Plan was approved in 2005 and subsequently amended in 2010. An EIR was prepared and certified in 2005 and a Supplemental EIR was prepared and certified in 2010 (2010 SEIR). The 2005 FEIR was certified (and the Master Plan approved) by the Los Angeles Community College District (LACCD) Board of Trustees in January 2005. In November 2008, voters approved Measure J, which included $3.5 billion in bonds to upgrade facilities at the nine Los Angeles Community College District campuses. These additional funds allowed a number of previously unfunded facilities/buildings in the College’s 2005 Master Plan to move forward. These bond funds also provided the College an opportunity to make additional minor revisions to the proposed physical improvements. The resultant changes to the 2005 Master Plan were approved in the 2010 West Los Angeles Facilities Master Plan. The Supplemental EIR (2010 SEIR) was prepared to address these changes.

Since preparation of the 2010 SEIR a number of conditions have changed. State Budget constraints have reduced the number of students enrolled at State Colleges, including WLAC. With fewer students, the demand for student classrooms at WLAC has been reduced compared to what was analyzed in 2010. In addition the funding available for WLAC has been reduced. Therefore, the 2013 Amendment to the 2010 WLAC Master Plan is proposed. Generally, it includes reductions, and/or elimination of, all of the major components included in the 2010 Master Plan. In addition to changes to the Master Plan itself, changes are proposed to where construction staging would occur. The LACCD Board of Trustees must approve the proposed 2013 Master Plan Amendment (including proposed changes to staging areas).

To comply with CEQA (Public Resources Code Sections 21000 et seq.) and State CEQA Guidelines (California Code of Regulations Sections 15000 et seq., hereinafter referred to as “Guidelines”), this Addendum to the certified 2010 Final SEIR has been prepared to evaluate the proposed 2013 Master Plan.

In 2005, to address concerns from the City of Culver City, LACCD and the City of Culver City signed a Settlement Agreement that included a number of mitigation actions that LACCD agreed to undertake to reduce environmental impacts on Culver City residents.

As the 2010 SEIR was being prepared, LACCD and the City of Culver City sought to address concerns of adjacent homeowner associations. The City of Culver City represented their residents and LACCD and the City of Culver City signed Amendment No. 1 to the previously signed settlement agreement. Amendment No. 1 to the Settlement Agreement included additional mitigation requirements and included the following provision:

17. Changed Conditions. For any new buildings or structures for which construction has not been commenced by December 31, 2013, the West Los Angeles College Facilities Master Plan (“Master Plan”) will be reviewed and updated, and in connection with such update, the District shall be required to reassess whether:

a. The portions of the Master Plan not yet built will have one or more significant effects that were not identified in the FSEIR;
b. Significant effects of the Master Plan previously examined will be substantially more severe than shown in the FSEIR;

c. Mitigation measures or alternatives to the Master Plan previously found not to be feasible would in fact be feasible and would substantially reduce one or more significant effects of the project;

d. Mitigation measures or alternatives to the Master Plan which are considerably different from those analyzed in the FSEIR would substantially reduce one or more significant effects on the environment; or

e. Substantial changes have occurred with respect to the circumstances under which the Master Plan was studied in the FSEIR having the potential to trigger a new significant environmental effect or a substantial increase in the severity of previously identified significant effects.

Since the proposed 2013 Master Plan includes a number of structures that would start construction after December 2013, the above provision of the Settlement Agreement was triggered and this Addendum is intended to address the reassessment-relevant provisions of the Settlement Agreement.

1.2 Regulatory Background

An Addendum to an EIR is the appropriate tool to evaluate the environmental effects associated with minor modifications to previously approved projects. It is only appropriate, however, if these modifications would not result in new or increased significant adverse impacts.

According to Section 15164(a) of the CEQA Guidelines, “the lead agency or a responsible agency shall prepare an addendum to a previously certified EIR if some changes or additions are necessary but none of the conditions described in Section 15162 calling for preparation of a subsequent EIR have occurred.” Similarly, an addendum may be prepared if only minor technical changes or additions are necessary. A brief explanation of the decision not to prepare a subsequent EIR must also be provided in the addendum, findings or the public record.

Section 15162 of the Guidelines lists the conditions, which would require the preparation of a subsequent EIR or negative declaration rather than an addendum. These include the following:

1. Substantial changes are proposed in the project which will require major revisions of the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;

2. Substantial changes occur with respect to the circumstances under which the project is undertaken which will require major revisions of the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

3. New information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence at the time the previous EIR was certified as complete or the negative declaration was adopted, shows any of the following:
A. The project will have one or more significant effects not discussed in the previous EIR or negative declaration;

B. Significant effects previously examined will be substantially more severe than shown in the previous EIR;

C. Mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measures or alternative; or

D. Mitigation measures or alternatives which are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.

Unlike a subsequent EIR, per Section 15162, a supplement to an EIR may be prepared per Section 15163:

(a) The Lead or Responsible Agency may choose to prepare a supplement to an EIR rather than a subsequent EIR if:

(1) Any of the conditions described in Section 15162 would require the preparation of a subsequent EIR, and

(2) Only minor additions or changes would be necessary to make the previous EIR adequately apply to the project in the changed situation.

Discussion contained within the CEQA Guidelines, relevant to Section 15163, more clearly distinguishes the difference between a subsequent and a supplemental EIR:

A supplement to an EIR may be distinguished from a subsequent EIR by the following: a supplement augments a previously certified EIR to the extent necessary to address the conditions described in section 15162 and to examine mitigation and project alternatives accordingly. It is intended to revise the previous EIR through supplementation. A subsequent EIR, in contrast, is a complete EIR which focuses on the conditions described in section 15162.

Section 3.0 below, discusses issue by issue how the impacts anticipated for the 2013 Master Plan would be similar or less than those previously anticipated for the 2010 Master Plan. The mitigation measures included in the 2010 SEIR (and Settlement Agreement with Culver City) all remain in effect (except as needed to be changed to reflect changed conditions – see discussion at the beginning of Section 3.0 regarding necessary changes to mitigation measures).

The proposed 2013 Modifications to the WLAC Master Plan (2013 Master Plan), described in detail in Section 2.0 of this Addendum, have been reviewed by LACCD in light of Section 15162 of the CEQA Guidelines. LACCD has assessed each of the issues addressed in the 2010 Final SEIR with respect to how impacts would change with the currently proposed 2013 Master Plan. As the CEQA Lead Agency, LACCD has determined that none of the conditions apply that would trigger a Supplemental or Subsequent EIR (see discussion above) and that an Addendum to the certified 2010 Final SEIR is the appropriate environmental documentation for the currently proposed 2013 Master Plan.
1.3 Incorporation by Reference

The following documents were used in the preparation of this Addendum, and are incorporated herein by reference, consistent with Section 15150 of the Guidelines:

These documents are available for review during regular business hours at WLAC.

1.4 Summary of Effects

In Section 3.0 of this Addendum, a thorough analysis has been conducted of the potential effects associated with the proposed 2013 Master Plan. Upon review of the potential environmental impacts associated with the 2013 Master Plan, it was determined that the 2013 Master Plan would not result in new significant adverse impacts that were not previously disclosed in the 2010 Final SEIR. In summary, the proposed 2013 Master Plan Update would not trigger any of the conditions that require the preparation of a Supplemental EIR or Subsequent EIR as outlined in Section 15162 of the CEQA Guidelines.
2.0 PROJECT DESCRIPTION

2.1 Background / Location

West Los Angeles College (College or WLAC) is one of the nine campuses of the Los Angeles Community College District (District or LACCD). The College is located within unincorporated Los Angeles County, approximately 11 miles southwest of downtown Los Angeles. The campus is bordered by Culver City to the west, northwest, and south, and the Baldwin Hills oil fields within unincorporated Los Angeles County to the northeast. The City of Los Angeles is located approximately one mile north of the campus. The area east of the project site is also located within unincorporated Los Angeles County. Figure 2-1 shows the location of the campus.

The 2010 Master Plan included the 9-acre site at 10100 Jefferson Boulevard in the City of Culver City. The 2013 Master Plan also includes this area within the Master Plan boundary (although a permanent use has not yet been identified).

The College campus occupies approximately 72 acres, excluding the 9-acre 10100 Jefferson Boulevard site, and is bounded by the following Los Angeles County roads: Freshman Drive to the west; Sophomore Drive to the north and east; and Stocker Street to the south. The street address of the College is 9000 Overland Avenue in the City of Culver City. Sophomore Drive is immediately adjacent to the Baldwin Hills and the Baldwin Hills oil fields located generally to the east of campus. Currently College-owned streets within the perimeter roads include Albert Vera Drive and B, C, D, E, and F Streets.

The College campus reflects previous master planning efforts dating back to the College opening in 1969. The site is currently developed with educational and administrative buildings, general landscaped areas, parking lots, athletic fields and sports facilities. The College campus buildings range in height from 1 to 5 stories.

Two major freeways are located in the project vicinity and provide regional access to the College. The San Diego Freeway, I-405, is approximately 1.25 miles west of the College and the Santa Monica Freeway (I-10) is approximately 1.6 miles north of the College. Local access to the College campus is provided by Overland Avenue to the south and College Boulevard from Jefferson Boulevard to the north.

Notable uses in the area surrounding the College include:

- Holy Cross Cemetery located south of the College, less than one mile away;
- Blanco Park and El Rincon Elementary School are located approximately one mile south;
- Lindberg Park and Veterans Park are both located less than two miles west;
- Farragut Elementary School and Culver City High School are located less than two miles west;
- The City of Culver City’s City Hall is located less than two-miles northwest;
- Blair Hills Park and Culver City Park are located approximately one mile north; and
- The Kenneth Hahn State Recreation Area is located approximately 4 miles to the east.

The land immediately adjacent to the College includes vacant land, oil drilling, and residential uses. The area surrounding the site is developed to the west, south and north and undeveloped to the east. In the City of Culver City, multi-family residential uses are located immediately west and northwest of the College, while single-family residential uses are located to the south of the College. The Baldwin Oil Fields border the College on the east; the area is undeveloped and contains several dirt roads. Further east are the City of Los Angeles residential communities of Ladera Heights and Baldwin Hills.

Table 2-1 compares major components of the 2005 Master Plan, the 2010 Master Plan and the currently proposed 2013 Master Plan. Table 2-2 compares building areas existing in 2003 (before the current master planning process began), the 2005 Master Plan, the 2010 Master Plan and the currently proposed 2013 Master Plan (in addition Table 2-2 identifies the approximate schedule for the remaining construction activities at each building).

As may be seen from Table 2-2 the amount of space to be constructed under the proposed 2013 Master Plan has been reduced substantially from the 2010 Master Plan. Not including parking space, the new building area to be added to the Campus would be reduced from 527,100 square feet (sf) to: 1) 194,437 sf of facilities already completed, plus 2) 153,180 sf of newly proposed buildings (of which 80,000 sf are not currently funded or scheduled for construction), for a total of 347,617 sf of new building area -- 179,483 sf less than was contemplated in the 2010 SEIR. In total, the proposed 2013 Master Plan would result in 122,461 sf less building area on-campus than was contemplated in the 2010 Master Plan and associated 2010 SEIR (and 35,091 sf more area than was analyzed in the 2005 FEIR), see Table 2-2.

While the North Parking Structure (1,458 spaces in the 2010 Master Plan) would not be constructed, the remaining newly-constructed South Parking Structure and all the surface lots that are available (because several buildings have been cancelled), together with the reduced anticipated on-campus enrollment as compared to what was anticipated in the 2005 EIR result in sufficient parking being available to accommodate an on-campus enrollment of 15,300.

The 2013 Master Plan includes two new main buildings as indicated below. These buildings are anticipated to be constructed starting in mid-2015 and being completed in late 2016. Other smaller buildings and renovation activities are proposed as well as infrastructure development (roads, utilities, storm drains, etc.) with all construction to be completed by the end of 2016.

- Technology Learning Center 2 (TLC 2) to be constructed at the eastern end of Parking Lot 5. The building would be 41,280 sf and four stories (75 feet) tall. It would include computer labs, offices and the campus emergency operations center.
- Watson Center 2 (WC 2) to be constructed in approximately the same location as proposed in the 2010 Master Plan (northeast quadrant of campus). The building would be 16,000 sf and would include a sound stage and motion picture/television crafts production shops. It would be one story (30 feet) tall.

In addition three buildings are contemplated but they are currently unfunded and construction is not yet scheduled:

- Faculty office building would be 43,000 sf and four stories tall (75 feet) tall.
- Student Services annex. The building would be 24,000 sf and two stories (45 feet) tall.
- Community Performing Arts Center. The building would be 13,000 sf and one story tall. The building would reach up to 65 feet tall at the top of the “fly” loft tower over the stage (where cabling ascends to lift scenery and other stage equipment).

The 2010 Master Plan included a Jefferson Arch entry monument. Instead of an arch, the 2013 Master Plan includes a smaller monument sign (approximately 13 feet tall and up to 14 feet 8 inches wide and 28 inches deep). The sign would include a 3 feet x 6 feet digital display. The sign would be adjustable (brightness and frequency of change) and the College will work with City staff to ensure that it does not present a distraction to drivers and safety hazard.
<table>
<thead>
<tr>
<th>TABLE 2-1:</th>
<th>WEST LOS ANGELES COLLEGE CAMPUS MAJOR COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 FEIR</td>
<td>2010 FSEIR</td>
</tr>
<tr>
<td>Physical Education Annex, identified on Master Plan map as proposed along Freshman Drive but building dimensions and area not discussed; 8,800 square foot men’s locker room remodel described in 2005 FEIR; existing facilities (proposed to be replaced in 2009 Master Plan) total about 65,000 square feet including an interior pool.</td>
<td>Allied Health and Wellness Building along Freshman Drive; 141,000 square foot building (including 33,300 sf of entry and circulation space that is not usable space); 3 stories tall (59.5 feet tall); includes 400 square feet of restrooms and an exterior pool.</td>
</tr>
<tr>
<td>Existing Plant Facility (demolished and removed); 2005 FEIR identified approximately 14,000 square foot new plant operations and facilities at the southwest corner of campus, closer to residential uses than existing facilities.</td>
<td>New Plant Facility with offices and workshops (behind North Parking Structure at the northeast corner of campus); 9,700 square feet offices, 23,900 square feet workshops; 2 and 3 stories 21.3 feet and 44 feet tall.</td>
</tr>
<tr>
<td>Modular Classroom Building B1 retained.</td>
<td>Modular Classroom B1, 4,279 sq. ft. to be demolished.</td>
</tr>
<tr>
<td>Media Complex (two buildings, internal to campus, corner of Stocker and Sophomore); 72 feet tall, about 330 seats.</td>
<td>Watson Center (two buildings internal to campus, just west of the North Parking Structure); one three stories and 50 ft. tall; and one four stories and 64 feet tall with a 345 seat theater.</td>
</tr>
<tr>
<td>Student Services/Administration Building (84,400 square feet, up to 3 stories tall).</td>
<td>Student Services (50,000 square feet, student services only), 4 stories 68.5 feet tall.</td>
</tr>
<tr>
<td>Student Services/High Tech Classroom, internal to campus, south of proposed North Parking Structure (one building, up to 60 feet tall, 40,000 square feet).</td>
<td>Student Union (12,000 square feet, 2 stories 25 feet tall) and Teaching Learning Center (87,500 square feet, 7 stories, 135 feet tall located in the southeast quadrant of the campus next to Math and Science -- where a 72-foot-tall Media Complex was located in the 2005 Master Plan).</td>
</tr>
</tbody>
</table>
TABLE 2-1:
WEST LOS ANGELES COLLEGE CAMPUS MAJOR COMPONENTS

<table>
<thead>
<tr>
<th></th>
<th>2005 FEIR</th>
<th>2010 FSEIR</th>
<th>Proposed 2013 Master Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soccer Field (between Physical Education and baseball field on Freshman).</td>
<td>Soccer Field with bleacher-style seating around home-plate and bleacher seating around the baseball home plate. A new 7,500 square foot baseball building and 1,400 square foot softball building.</td>
<td>No changes to sports fields (after the Stormwater Management project is completed in October 2013).</td>
<td></td>
</tr>
<tr>
<td>Parking (4,368 parking spaces were anticipated for 2022 amounting to a surplus of 1,044 spaces compared to demand); North Parking, Lots 1 and 2, two buildings, 1,950 spaces, 6 levels, approximately 45 feet in height.</td>
<td>Parking (approximately 2,650 spaces with a demand of 1,908 spaces in 2022 -- assuming on-campus population of 10,998 plus 682 staff amounting to a surplus of 742 spaces compared to demand; an additional 464 spaces are available on streets around campus if needed resulting in 1,206 excess spaces over demand; North Parking Structure, Lots 1 and 2, one building, 1,458 spaces, 6 levels, 66.8 feet tall.</td>
<td>Parking: 2,487 parking spaces with a projected campus population of 15,300 students and 664 employees (compared to a projected demand for 2,186 spaces). Existing Parking Lot 4 to be replaced by proposed Dance Studio. Surface parking lots A, 1, 2, 5, & 7 resurfaced and restriped: 925 spaces.</td>
<td></td>
</tr>
<tr>
<td>Internal Circulation Changes (center campus closure to cars, from B Street to F Street to Albert Vera Drive. Includes the elimination of F Street)</td>
<td>Internal Circulation Changes. Center campus closure to vehicular traffic, B Street from E Street to Albert Vera Drive; emergency, delivery, and public transportation vehicles excepted. E Street and F Street (east of existing entrance to Parking Lot 5) closed to vehicular traffic; emergency vehicles excepted. Sophomore Drive two-way to encourage use of College Boulevard and keep traffic off Freshman Drive. Also reduces traffic access to campus from Overland Avenue, thus reducing College-related traffic in the neighborhoods south of campus.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE: Turner Construction, 2009, 2010; West Edge Architects and Cumming/gkkworks 2013
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Master Plan Buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>ASO Lounge</td>
<td>1,888</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>Storage</td>
<td>360</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>Storage</td>
<td>1,055</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>Offices</td>
<td>2,132</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>ASO Offices</td>
<td>1,848</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>6</td>
<td>A6</td>
<td>Food Pavilion</td>
<td>2,921</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>7</td>
<td>A8</td>
<td>Bookstore</td>
<td>7,230</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>8</td>
<td>A9/A10</td>
<td>ASO/Offices</td>
<td>8,407</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>To be demolished 10/16 -- 12/16</td>
</tr>
<tr>
<td>9</td>
<td>A12</td>
<td>Offices</td>
<td>7,280</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>10</td>
<td>A13</td>
<td>Offices</td>
<td>11,189</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished, 12/12 – 2/13</td>
</tr>
<tr>
<td>11</td>
<td>A14</td>
<td>Storage</td>
<td>587</td>
<td>587</td>
<td>0</td>
<td>587</td>
<td>ADA only</td>
</tr>
<tr>
<td>12</td>
<td>A15</td>
<td>Facilities</td>
<td>2,990</td>
<td>2,990</td>
<td>0</td>
<td>2,990</td>
<td>ADA only</td>
</tr>
<tr>
<td>13</td>
<td>A16</td>
<td>Facilities Shop</td>
<td>10,285</td>
<td>10,285</td>
<td>0</td>
<td>10,285</td>
<td>ADA only</td>
</tr>
<tr>
<td>14</td>
<td>A17</td>
<td>Classroom</td>
<td>26,732</td>
<td>26,732</td>
<td>26,732</td>
<td>26,732</td>
<td>ADA only</td>
</tr>
<tr>
<td>15</td>
<td>A18</td>
<td>Classroom</td>
<td>25,420</td>
<td>25,420</td>
<td>25,420</td>
<td>25,420</td>
<td>ADA only</td>
</tr>
<tr>
<td>16</td>
<td>A19</td>
<td>Airplane Engine Test</td>
<td>2,830</td>
<td>2,830</td>
<td>2,830</td>
<td>2,830</td>
<td>ADA only</td>
</tr>
<tr>
<td>17</td>
<td>B1</td>
<td>Offices / Mailroom & Reprographics</td>
<td>8,558</td>
<td>8,558</td>
<td>0</td>
<td>8,558</td>
<td>To be demolished, 12/15 – 2/16</td>
</tr>
<tr>
<td>18</td>
<td>B2</td>
<td>Toilets</td>
<td>1,072</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished</td>
</tr>
<tr>
<td>19</td>
<td>B3</td>
<td>Math Classroom</td>
<td>1,956</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished</td>
</tr>
<tr>
<td>20</td>
<td>B4</td>
<td>Offices / Classroom</td>
<td>8,558</td>
<td>8,558</td>
<td>0</td>
<td>8,558</td>
<td>To be demolished. Date TBD – unfunded.</td>
</tr>
<tr>
<td>21</td>
<td>B5</td>
<td>Offices / Classroom</td>
<td>8,558</td>
<td>8,558</td>
<td>0</td>
<td>8,558</td>
<td>To be demolished. Date TBD – unfunded.</td>
</tr>
<tr>
<td>22</td>
<td>B6</td>
<td>Offices</td>
<td>1,800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>To be demolished. Date TBD – unfunded.</td>
</tr>
<tr>
<td>23</td>
<td>B7</td>
<td>Restrooms</td>
<td>800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>To be demolished. Date TBD – unfunded.</td>
</tr>
<tr>
<td>24</td>
<td>B8</td>
<td>Classroom</td>
<td>4,143</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished</td>
</tr>
<tr>
<td>25</td>
<td>B9</td>
<td>Classroom</td>
<td>4,147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished</td>
</tr>
<tr>
<td>26</td>
<td>B10</td>
<td>Classroom</td>
<td>5,826</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Demolished</td>
</tr>
<tr>
<td>27</td>
<td>C1</td>
<td>Avengers Lockers</td>
<td>10,722</td>
<td>10,722</td>
<td>10,722</td>
<td>10,722</td>
<td>ADA and HVAC</td>
</tr>
<tr>
<td>28</td>
<td>C2</td>
<td>Storage</td>
<td>2,045</td>
<td>2,045</td>
<td>2,045</td>
<td>2,045</td>
<td>To be demolished, 8/15 – 10/15</td>
</tr>
<tr>
<td>29</td>
<td>CDC</td>
<td>Child Development</td>
<td>14,073</td>
<td>14,073</td>
<td>14,073</td>
<td>14,073</td>
<td>No proposed work.</td>
</tr>
<tr>
<td>30</td>
<td>CE</td>
<td>Offices / Classroom</td>
<td>31,865</td>
<td>31,865</td>
<td>31,865</td>
<td>31,865</td>
<td>27,850 sf renovation, Unfunded</td>
</tr>
<tr>
<td>31</td>
<td>CP</td>
<td>Central Plant</td>
<td>5,066</td>
<td>5,066</td>
<td>5,066</td>
<td>5,066</td>
<td>Minor upgrades, 10/16</td>
</tr>
<tr>
<td>32</td>
<td>FA-A</td>
<td>Theater & Exhibition</td>
<td>9,154</td>
<td>9,154</td>
<td>9,154</td>
<td>9,154</td>
<td>No proposed work,</td>
</tr>
<tr>
<td>34</td>
<td>HLRC</td>
<td>Library</td>
<td>66,190</td>
<td>66,190</td>
<td>66,190</td>
<td>66,190</td>
<td>16,800 sf renovation, 8/15 – 8/16</td>
</tr>
<tr>
<td>35</td>
<td>PEC - N</td>
<td>PE Men's</td>
<td>19,073</td>
<td>19,073</td>
<td>0</td>
<td>19,073</td>
<td>ADA and HVAC</td>
</tr>
<tr>
<td>36</td>
<td>PEC</td>
<td>Physical Education</td>
<td>23,203</td>
<td>23,203</td>
<td>0</td>
<td>23,203</td>
<td>ADA and HVAC</td>
</tr>
<tr>
<td>37</td>
<td>PEC - S</td>
<td>PE Women's</td>
<td>15,900</td>
<td>15,900</td>
<td>0</td>
<td>15,900</td>
<td>2,500 sf renovation, ADA and HVAC 12/14 – 9/15</td>
</tr>
<tr>
<td>38</td>
<td>PE-BB</td>
<td>Baseball Storage</td>
<td>250</td>
<td>250</td>
<td>0</td>
<td>250</td>
<td>ADA only</td>
</tr>
<tr>
<td>39</td>
<td>PE-RR</td>
<td>Baseball Restrooms</td>
<td>214</td>
<td>214</td>
<td>0</td>
<td>214</td>
<td>ADA only</td>
</tr>
<tr>
<td>40</td>
<td>PH</td>
<td>Pump House</td>
<td>1,114</td>
<td>1,114</td>
<td>1,114</td>
<td>1,114</td>
<td>No proposed work,</td>
</tr>
<tr>
<td>41</td>
<td>SC</td>
<td>Science Center</td>
<td>8,231</td>
<td>8,231</td>
<td>8,231</td>
<td>8,231</td>
<td>Part 1: 6/15 – 12/15 Part 2: TBD</td>
</tr>
</tbody>
</table>
TABLE 2-2: WEST LOS ANGELES COLLEGE CAMPUS BUILDING AREAS (gsf)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>WSE</td>
<td>West Side Ext (Bungalow R7)</td>
<td>1,907</td>
<td>1,907</td>
<td>0</td>
<td>1,907 (Modular Building to be Relocated to Southwest corner of campus)</td>
<td>7/15--10/15</td>
</tr>
</tbody>
</table>

Subtotal 409,794 287,100 267,052 324,074

2010 Master Plan Buildings

<table>
<thead>
<tr>
<th>1</th>
<th>SPS</th>
<th>South Parking Structure</th>
<th>n/a</th>
<th>1,000 spaces</th>
<th>1,132 spaces</th>
<th>993 spaces, 301,700 sf (As-Built)</th>
<th>Constructed, 9/07 – 1/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>GS</td>
<td>Grandstand</td>
<td>n/a</td>
<td>1,500 seats</td>
<td>1,378 seats</td>
<td>1,378 seats (As-Built)</td>
<td>Constructed, 5/09 – 5/11</td>
</tr>
<tr>
<td></td>
<td>Restrooms</td>
<td></td>
<td>n/a</td>
<td>4,000</td>
<td>1,700</td>
<td>1,713 (As-Built)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SMB</td>
<td>Science & Math</td>
<td>n/a</td>
<td>85,200</td>
<td>86,000</td>
<td>86,316 (As-Built)</td>
<td>Constructed, 2/08 – 2/10</td>
</tr>
<tr>
<td>4</td>
<td>SSB</td>
<td>Student Services</td>
<td>n/a</td>
<td>84,400</td>
<td>50,000</td>
<td>56,110 (As-Built)</td>
<td>Constructed, 3/08 – 2/12</td>
</tr>
<tr>
<td>5</td>
<td>GC</td>
<td>General Classroom</td>
<td>n/a</td>
<td>46,000</td>
<td>46,000</td>
<td>50,298 (As-Built)</td>
<td>Constructed, 3/08 – 2/12</td>
</tr>
<tr>
<td>6</td>
<td>NPS</td>
<td>North Parking Structure</td>
<td>n/a</td>
<td>1,950 spaces</td>
<td>1,458 spaces</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>7</td>
<td>PFC</td>
<td>Facility Workshops</td>
<td>n/a</td>
<td>14,000</td>
<td>9,700</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>8</td>
<td>TLC</td>
<td>Teaching Learning Ctr.</td>
<td>n/a</td>
<td>40,000</td>
<td>87,500</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>WC</td>
<td>Watson Ctr. (Media Arts)</td>
<td>n/a</td>
<td>63,900 (^c)</td>
<td>60,000 (^c)</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>10</td>
<td>SU</td>
<td>Student Union</td>
<td>n/a</td>
<td>0</td>
<td>12,000</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>11</td>
<td>AHW</td>
<td>Allied Health &Wellness</td>
<td>n/a</td>
<td>0</td>
<td>141,000</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
<tr>
<td>12</td>
<td>CC</td>
<td>Community Center</td>
<td>n/a</td>
<td>12,000</td>
<td>0</td>
<td>0 (Cancelled)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Subtotal 0 349,500 527,100 194,437

Building Analyzed in the 2005 EIR but not built

| 1 | PE X | Phys. Ed Expansion | 0 | 20,000 \(^d\) | 0 | 0 (Cancelled) | n/a |

Subtotal 0 20,000 0 0 (Cancelled) 0

2013 Master Plan Buildings

<table>
<thead>
<tr>
<th>1</th>
<th>TLC2</th>
<th>TLC 2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>41,280</th>
<th>3/15 – 12/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>WC2</td>
<td>Watson Center 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16,000</td>
<td>9/15 – 12/16</td>
</tr>
<tr>
<td>3</td>
<td>DS</td>
<td>Dance Studio</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,400</td>
<td>12/14 – 9/15</td>
</tr>
<tr>
<td>4</td>
<td>CP-N</td>
<td>Central Plant - North</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,000</td>
<td>8/15 – 11/16</td>
</tr>
<tr>
<td>5</td>
<td>PFW</td>
<td>Plant Fac. Warehouse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,500</td>
<td>12/14 – 10/15</td>
</tr>
<tr>
<td>6</td>
<td>FOB</td>
<td>Faculty Office Building</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43,000</td>
<td>TBD – unfunded</td>
</tr>
<tr>
<td>7</td>
<td>SSA</td>
<td>Student Service Annex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,000</td>
<td>TBD – unfunded</td>
</tr>
<tr>
<td>8</td>
<td>CPAC</td>
<td>Com. Perf. Arts Center</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13,000</td>
<td>TBD – unfunded</td>
</tr>
</tbody>
</table>

Subtotal 0 0 0 153,180

Grand Total 409,794 636,600 794,152 671,691

Notes:

\(^a\) Existing building GSF has been amended to match the Space Inventory survey completed as part of the 2012-13 WLAC Needs Assessment. If a building was demolished prior to the Space Inventory survey, the GSF total has not been altered.

\(^b\) Subtotal does not include GSF for ‘South Parking Structure’, ‘Grandstand’, and ‘North Parking Structure’.

\(^c\) Approximately 330 seats in 2005, 345 seats in 2009

\(^d\) Drawn as 20,000 square feet on Master Plan map but area not identified in 2005 FEIR and therefore not included in total

SOURCE: Turner Construction, 2009, 2010; West Edge Architects and Cumming/gkk works 2013

Figure 2-1 shows the Project Location, Figure 2-2 shows campus buildings in 2003 before the Master Plan process began, Figure 2-3 shows the 2005 Master Plan, Figure 2-4 shows the 2010 Master Plan, Figure 2-5 shows the 2013 Master Plan, Figure 2-6 shows the 2013 Master Plan Parking Plan, Figure 2-7 shows the 2013 Vehicle Travel Plan, Figure 2-8 shows construction staging areas and sound walls.
Figure 2-1
Project Location
Figure 2-2: 2003 Existing Conditions

SOURCE: West Los Angeles College Master Plan, 2002
Figure 2-5

2013 Campus Master Plan, Conceptual Design

SOURCE: West Edge Architects, 2013
PARKING TOTALS

<table>
<thead>
<tr>
<th>Location</th>
<th>Accessible</th>
<th>Standard</th>
<th>Location</th>
<th>Accessible</th>
<th>Standard</th>
<th>Location</th>
<th>Accessible</th>
<th>Standard</th>
<th>Location</th>
<th>Accessible</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 'A'</td>
<td>4</td>
<td>56</td>
<td>P.E. Lot</td>
<td>7</td>
<td>272</td>
<td>Lot 'BA'</td>
<td>0</td>
<td>128</td>
<td>CDC Lot</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Lot '1'</td>
<td>5</td>
<td>129</td>
<td>'SSB' Lot</td>
<td>0</td>
<td>3</td>
<td>'CDC' Lot</td>
<td>2</td>
<td>9</td>
<td>South Structure</td>
<td>25</td>
<td>968</td>
</tr>
<tr>
<td>Lot '2'</td>
<td>3</td>
<td>5</td>
<td>Lot '5'</td>
<td>9</td>
<td>309</td>
<td>Stocker Street</td>
<td>0</td>
<td>47</td>
<td>Stocker Street</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Grandstand Lot</td>
<td>5</td>
<td>24</td>
<td>Lot '6'</td>
<td>3</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot '3'</td>
<td>2</td>
<td>7</td>
<td>Lot '7'</td>
<td>9</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL = 2,487 Stalls
LEGEND

- RESTRICTED TRAFFIC
- BUS STOP
- STUDENT DROP-OFF
- "STAND-ONE" ACCESSIBILITY DROP-OFF
- BARRICADE (BOLLARDS)
- VEHICULAR TRAFFIC (TWO-WAY)
- ELECTRONIC SWING GATE & CALL BOX TO SHERIFF DEPARTMENT
- MANUAL SWING GATE

*Note: As of 2012, there is no accessible path of travel from Lots 5 or 7 to the rest of campus. "Stand-One" is a shuttle service that currently provides access from these lots to drop-off shown in the above graphic. Work associated with the 'TLC 2' project will address the existing path of travel deficiencies, at which point, the "Stand-One" service will cease.

SOURCE: West Edge Architects, 2013

West Los Angeles College 2013 Master Plan

Figure 2-7

2013 Vehicular Travel Plan
Figure 2-8

2013 Master Plan Construction Staging and Sound Walls
Construction

As discussed above a number of construction projects anticipated in the 2010 Master Plan have been cancelled or substantially reduced in size. Some of the areas previously anticipated to be construction sites are now proposed to be used for construction staging for the remaining construction projects (see Figure 2-8). There is one area on-campus that is now proposed to have construction activity that was not anticipated in 2010.

- Southwest corner of campus. Construction of a 7,500 sf warehouse and relocation of a 1,900 sf bungalow would now occur in this area.

Parking

As identified in the 2010 Final SEIR, College-related parking demand is 1 space per 7 students; this rate also takes into account faculty and staff parking demand. With increased availability and use of transit including expansion of the Exposition Line and other transit enhancements as well as improvements to bicycle lanes in the Los Angeles area anticipated to occur over time, this parking rate could drop. Construction worker parking would vary over the construction period. In addition a number of leases result in additional parking demand.

No changes are proposed to the (existing) Grandstand lot (29 spaces). It is approximately 150 feet from adjacent residences. It is used by officials and for disabled parking. No new impacts are anticipated from that lot.

Construction worker parking is anticipated to occur in identified remote parking areas (such as the top floor of the South Parking Structure), where it would not interfere with College parking.

Fall 2012 on-campus enrollment was 8,233 generating a demand for 1,190 spaces from students, faculty and staff. On-campus leased uses generate a demand for an estimated 153 spaces plus the 396 spaces in Lot 7 currently used by Culver City Toyota. Construction worker parking would generate a demand for up to 100 spaces on the campus. There are currently 2,283 parking spaces available on campus. As construction progresses, surface parking lots would be needed for construction staging resulting in the temporary removal of up to 490 spaces leaving a minimum of approximately 1,793 spaces. 1,793 spaces would be sufficient for 11,851 on-campus students plus 100 construction workers. Lease uses would be terminated as needed to ensure sufficient parking for College users and construction workers.
2.3 Purpose of the Proposed Project

The primary purpose of the proposed Master Plan is to guide the physical development of the College in support of the College Education Master Plan while taking revised student enrollment and projected employees numbers into consideration. Since preparation and approval of the 2010 Master Plan, student attendance projections have changed. It is now anticipated that full build-out of the College (with an on-campus enrollment of 15,300 students), may not occur until 2036 as a result of State budget constraints (see discussion below).

2.4 Student Enrollment and Campus Use

On-Campus Enrollment

Student contact hours, enrollment and projected employees for 2022 have changed substantially compared to what was projected and analyzed in the 2005 FEIR.1 The 2010 Draft EIR indicated that the total number of enrolled students for 2022 was anticipated to be 22,360 (total of on-campus and students on-line learning at a distance), compared to the 18,904 students (all on-campus) anticipated in the 2005 FEIR. Of the 22,360 enrolled students anticipated for 2022, 7,060 of these students (or 31.6%) were anticipated to be using on-line resources and not physically attending on-campus classes. This resulted in a decrease in anticipated on-campus student attendance to 15,300 students in 2022. Similarly, the 2022 on-campus employment projections dropped to 664, as compared to 1,248 employees identified in the 2005 Master Plan.

The 2010 Final SEIR indicated that total enrollment in 2022 would be 16,929 with an anticipated 10,998 students on-campus in the year 2022. As part of the 2013 Master Plan, student enrollment forecasts were undertaken using anticipated budget changes and trends in on-line education with a 3.2% anticipated average annual increase in student contact hours through 2036 based on reasonably anticipated growth at West Los Angeles College based on historic trends in demand and on-line learning. The State budget controls the number of classes and therefore number of students that can be on-campus. State budget allotments to community colleges decreased during the recession and have only recently started to increase again. Historically increases in funds have averaged less than 3% per year. Proposition 30 (which passed in November 2012) assumes 4% annual growth for California’s community colleges. The LACCD Chancellor’s budget establishes a 3.6% growth rate for the 2012/2013 year. The result of the detailed planning effort, taking in to account anticipated funding (and assuming an average 3.2% growth rate in student contact hours), identified the year 2036 as the anticipated date when the campus would reach it’s anticipated capacity of 15,300 students.2

Fall 2012 on-campus enrollment was 8,233.

1 Campus planning is based on both headcount and student contact hours (SCH). Headcount is the unduplicated number of students enrolled in courses. SCH is the total number of hours per semester that students are in a classroom being instructed by a teacher, and is calculated by multiplying enrollment in each course x duration of each course meeting x number of course meetings per semester. Based on the 2010 SEIR and other factors, full campus occupancy was determined to be 15,300 on-campus students (headcount), and a target ratio of full-time to part-time students was established in which full-time students represent 32% of the student body. Together, the full-capacity headcount and target ratio of full-time to part-time students yield a target SCH level used for planning campus facilities. Projected SCH is based on increasing 2012 SCH by 3.2% each year and assigning students to courses according to forecast demand for each class. (This results in an annual increase in enrollment of 2.6% per year.) At 3.2% annual growth, SCH levels are projected to reach the planning target SCH level in 2036.

2 15,300 on-campus students is equivalent to approximately 2,731,280 student contact hours (SCH).
Lease Arrangements

WLAC has entered into a number of lease arrangements to allow portions of the campus to be used by outside parties on a temporary basis (see Table 2-3 below). The College may terminate these leases at any time with 60 days notice to the lessee.

<table>
<thead>
<tr>
<th>Lessee</th>
<th>Description</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandman University</td>
<td>Approximately 250 sf of office space in Building B1 (workstations for three staff during regular business hours). Up to three parking spaces would be required.</td>
<td>4/1/13</td>
<td>6/30/15</td>
</tr>
<tr>
<td>University Permit</td>
<td>Use of two classrooms (CE 220 and CE222; up to 30 students per class for a total of up to 60 students; 120 to 240 students per year) Monday to Thursday 5:30 pm to 9:30 pm. Students and faculty drive to campus and purchase up to 62 parking permits. Parking demand for up to 62 spaces is assumed.</td>
<td>4/1/13</td>
<td>6/30/15</td>
</tr>
<tr>
<td>Pacific Oaks College</td>
<td>Use of one classroom (GC 110 or GC 150; up to 30 students per class; 120 to 240 students per year) Monday and Wednesday 5:30 pm to 10:00 pm; Saturday 9:00 am to 5:00 pm. Students and faculty drive to campus and purchase up to approximately 31 parking permits. Parking demand for 31 spaces is assumed.</td>
<td>8/26/13</td>
<td>6/9/14</td>
</tr>
<tr>
<td>Culver City (Miller)</td>
<td>69,592 sq. ft. (existing fenced construction site) in Lot 7. Storage for excess dealer inventory. 15 vehicles in and out each day during regular business hours. Currently this leased use occupies most of Lot 7 (396 spaces).</td>
<td>4/1/13</td>
<td>4/30/15</td>
</tr>
<tr>
<td>(Miller) Toyota</td>
<td>Classroom (B5-204) for up to 32 Bright Star students and staff on campus Monday to Thursday 7:30 am to 11:00 am. Children and staff arrive by private bus that does not park on campus.</td>
<td>8/26/13</td>
<td>6/9/14</td>
</tr>
<tr>
<td>Bright Star</td>
<td>Spring Track and Field Practice. Concurrent use of Track and Field facilities between 2:00 pm and 5:30 pm three or four days per week (Monday to Friday). Participants arrive in crew vans, school busses, and private cars that park on campus (Lot 5) during practice, approximately 120 users daily (up to approximately 60 vehicles assuming an average of 2 people per vehicle).</td>
<td>February</td>
<td>May</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Weekend Field Use. Adult recreational Soccer. Various users Saturday and Sunday approximately 30-40 weekends per year, two to three games per day (up to 40 vehicles per game, 120 vehicles per day park in Lot 5).</td>
<td>Year round</td>
<td></td>
</tr>
</tbody>
</table>

Source: West Los Angeles College, 2013

These lease arrangements add to campus activity including traffic on and in the vicinity of the campus. However most of the activity occurs during off-peak hours and therefore does not add to peak hour traffic. Currently the campus is not operating at anywhere close to build-out capacity and these uses occur within the capacity that will eventually be used by campus uses. As indicated above, because of State budget constraints it is now anticipated that the campus will not reach its build out capacity until 2036.

WLAC must consider these uses in its mitigation monitoring and reporting obligations related to traffic and parking (number of peak hour trips generated and use of parking spaces) when evaluating mitigation compliance.
2.5 Discretionary Approvals

Los Angeles Community College District Board of Trustees: Approval of 2013 Master Plan

County of Los Angeles: Discretionary permits as may be needed.

City of Los Angeles and City of Culver City Discretionary Permits as may be needed.

2.6 Schedule

The campus construction is now anticipated to extend through the end of 2016. Approximate timeframes for individual components are shown in Table 2-2.
3.0 ENVIRONMENTAL ANALYSIS

As indicated in the certified Final 2010 SEIR, significant (or potentially significant) impacts were anticipated as a result of the 2010 Master Plan in the following issue areas: biological impacts as a result of construction of the secondary access road (substantially completed in 2010); construction air quality and construction noise; and traffic at full occupancy of the campus (which is now anticipated to occur in 2036 due to State budget constraints). The remaining impacts were found to be less than significant with mitigation incorporated or simply less than significant -- no mitigation required.

No new significant or potentially significant impacts to the physical environment are anticipated to occur as a result of the implementation of the proposed 2013 Master Plan. The following analysis evaluates each issue area to determine how impacts would change under the 2013 Master Plan as compared to the 2010 Master Plan. The proposed 2013 Master Plan would not substantially alter the assumptions used to assess impacts of the environmental issues addressed in the 2010 Final SEIR, except that the years when impacts would occur would now occur later than anticipated in the 2010 SEIR. The 2010 SEIR anticipated construction extending through 2013; this Addendum addresses construction extending through the end of 2016.

The adopted mitigation measures and standard operating procedures identified in the 2010 Final SEIR would apply equally to the 2013 Master Plan, except as revised to reflect modified planning in the 2013 Master Plan as follows:

- **Measure V-3**: Sports Field Lighting Plan is no longer needed since sports field lighting is not now proposed.

- **Mitigation Measure N-1**, the figure identifying the staging areas and sound walls (Figure 3-15 in the 2010 SEIR) is revised to refer to Figure 2-8 of this Addendum.

In addition, traffic impacts are dependent on 1) the number of students on campus and 2) the % of on-campus students who drive. Both of these numbers are subject to change over time as on-line courses become more popular and as more students use transit, carpools or alternative modes of transportation. The 2010 SEIR Mitigation Monitoring Plan (MMRP) indicated that mitigation of intersections in the City of Los Angeles (Measure T-7A) would occur prior to occupancy of the last building. Full occupancy of the last building may not occur for many years if at all. Therefore the timing of implementation of Measure 7A is revised to be: Measures shall be implemented prior to the number of new trips from WLAC reaching a level that would impact each intersection. In addition the following is added to the end of **Mitigation Measure 7B**: A new traffic study will be required for any elements of the 2013 West Los Angeles College Master Plan for which construction will not be completed by 2022.

As discussed in the Project Description section above, as a result of delays and revisions to the Master Plan, construction would be extended through the end of 2016. Daily activities (and associated air emissions and construction noise) would not differ substantially from what was presented in the 2010 Final SEIR; however, the duration of these activities at individual construction sites (and therefore the duration of impacts) would be shorter. From 2010 through 2013 campus construction activities have been

3 A study to determine when mitigation would be required for the six intersections in the City of Los Angeles identified in the 2005 Final EIR and 2010 SEIR as impacted by the Master Plan and requiring mitigation (based on current trip generation rates) indicates that mitigation measures would be needed as follows: Jefferson/National -- 2021/2022; Jefferson/Higuera -- 2024/2025; La Cienega/Jefferson -- 2029/2030; La Cienega/Rodeo -- 2029/2030; La Cienega/Fairfax -- 2029/2030; one measure -- La Cienega/Centinela -- may never be needed if on-campus enrollment does not exceed 15,300.
maintained at a relatively low level, and have been confined to minor infrastructure work and the completion of buildings already underway.

Construction activities have been of decreased intensity (fewer truck trips, fewer pieces of equipment in operation at any one time), from 2010 through 2013 and on average are anticipated to be less than would have occurred under the 2010 Master Plan because of the reduced scope of construction. However, as a result of delays in the planning process, the overall period when construction activities are occurring on campus would be extended by three years from the end of 2013 to the end of 2016.

There is one area on campus that is now proposed to have minor construction activity where such activity was not identified in 2010.

- Southwest corner of campus. Construction of a 7,500 sf pre-manufactured warehouse and relocation of a 1,900 sf bungalow would now occur in this area. Construction of these two buildings would be no more intrusive than construction of a single-family home. (The 2005 Master Plan included plant operations and storage facilities in this area.)
A. AESTHETICS

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to aesthetics compared to the 2010 Master Plan was evaluated in relation to four questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan have a substantial adverse effect on a scenic vista?
(b) Would the 2013 Master Plan substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
(c) Would the 2013 Master Plan substantially degrade the existing visual character or quality of the site and its surroundings?
(d) Would the 2013 Master Plan create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

As with the 2005, and 2010 Master Plans, impacts to scenic vistas and resources are not anticipated to occur under the 2013 Master Plan. Even more than the 2010 Master Plan, the majority of the planned building additions would occur within the core area of the campus or adjacent to it, and their location and appearance would be in character with existing development in terms of form, function, and massing.

Building heights of proposed buildings are now similar to those anticipated in the 2005 FEIR and lower than anticipated in the 2010 SEIR. The 2005 FEIR anticipated heights of 40 feet to 72 feet. The 2010 SEIR addressed building heights from 25 feet (Student Union) to 59 feet 6 inches (Allied Health and Wellness Building) to 135 feet (Teaching Learning Center -- TLC). The Allied Health and Wellness Building and TLC Building are no longer proposed; a building labelled TLC 2 that would be shorter and in a different location -- in the center of campus (east end of Lot 5 rather than in the southeast corner of campus on a hillside), and would be four stories (75 feet) tall (compared to 7 stories and 135 feet tall).

The new TLC 2 building would be located in proximity to the center of campus. It would incorporate a four-story elevator structure that would allow a pedestrian connection between the lower campus and the center and upper campus providing a substantial improvement in accessibility for the campus as a whole. The new TLC 2 building would be visible to pedestrians and motorists along Freshman Drive as part of the center of campus grouping of buildings. The previously-identified (2010) Allied Health and Wellness Building that was proposed along Freshman Drive would not be constructed. Landscaping improvements along Freshman Drive have been completed and create an aesthetically pleasing streetscape along Freshman Drive, which would conceal some views of the TLC 2 building.

The previously proposed seven-story TLC building, at 135 feet tall, would have been the tallest and most visible building on campus. It would have been approximately 50 feet taller than the next tallest building on campus (the Science and Math Building). This TLC building is no longer included in the Master Plan.

Similar to the 2005 and 2010 Master Plans, the 2013 Master Plan, with the incorporation of proposed design guidelines, would be appropriate to its setting and consistent in scale and design with, the surrounding development. No change impacts to the visual quality and character of the campus would occur.

The area in the vicinity of the 10100 Jefferson Boulevard property is generally of low quality due to industrial uses and oil extraction activities in the area. There are no significant visual resources in this area that would be removed or altered. No change in anticipated uses for this area has occurred. Possible future uses for the 10100 Jefferson Boulevard property continue to be college-related facilities, including training classrooms and/or administrative facilities. Nothing is specifically proposed for the 10100 Jefferson site at this time, and additional environmental review will be required once plans are identified.
Light and glare impacts would be similar to impacts anticipated under the 2005 FEIR and 2010 SEIR. No changes have been proposed to the perimeter street lighting. As in the 2005 and 2010 Master Plans, under the 2013 Master Plan the illumination from new buildings would be buffered and screened by mature trees distributed throughout the intervening areas.

Given the setback distance of new structures and the presence of existing intervening buildings and mature trees, the buildings proposed under the 2013 Master Plan, which are substantially smaller than those anticipated in the 2010 Master Plan, would result in less ambient lighting on the campus as compared to what would have occurred under the 2010 Master Plan. The 2013 Master Plan would not contribute significant amounts of light to the prevailing nighttime illumination in the project vicinity.

The 2013 Master Plan does not include new lighting of baseball and soccer fields adjacent to Freshman Drive eliminating the potentially significant spillover lighting to residents to the west. In addition no changes to the sports fields are now proposed (the 2010 Master Plan included new bleacher seating around the baseball field).

The 2013 Master Plan does not identify any permanent development of the 10100 Jefferson Boulevard site beyond the completed secondary access road (now College Boulevard). Any future development of the 10100 Jefferson Boulevard property could increase light and glare in the area; additional environmental review will be required for any development on that site. The entry arch included in the 2010 Master Plan is no longer proposed. The proposed new entry sign including digital display facing Jefferson Boulevard would be typical of college entry signs and would not add substantially to lighting in the area and would not impact residential uses, the closest of which would be approximately 500 feet away and screened by vegetation. The 2010 Master Plan included a Jefferson Arch entry monument. Instead of an arch, the 2013 Master Plan includes a smaller monument sign (approximately 13 feet tall and up to 14 feet 8 inches wide and 28 inches deep). The sign would include a 3 feet x 6 feet digital display. The sign would be adjustable (brightness and frequency of change) and the College will work with City staff to ensure that it does not present a distraction to drivers and safety hazard. There are existing sources of light and glare in the area from industrial and other urban uses in the vicinity of Jefferson Boulevard.

B. AGRICULTURAL AND FOREST RESOURCES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to agricultural and forest resources compared to the 2010 Master Plan was evaluated in relation to five questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
(b) Would the 2013 Master Plan conflict with existing zoning for agricultural use, or a Williamson Act contract?
(c) Would the 2013 Master Plan conflict with existing zoning for, or cause rezoning of, forestland (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?
(d) Would the 2013 Master Plan result in the loss of forestland or conversion of forestland to non-forest use?
(e) Would the 2013 Master Plan involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forestland to non-forest use?

Currently, the campus does not support agricultural use, timberlands or forestlands and is not known to include any Prime Farmland, Unique Farmland, or Farmland of Statewide importance. Under the proposed 2013 Master Plan, the campus would continue the existing use with minor intensification of development. In addition, the 10100 Jefferson Boulevard entry site in Culver City continues to be included in the Master Plan, although no permanent use has been identified. Similar to the campus, this site is not known to include any Prime Farmland, Unique Farmland, or Farmland of Statewide importance. It is designated for Industrial use. Therefore, as with the 2010 Master Plan, the 2013 Master Plan would not convert farmland to non-agricultural uses.

As with the 2005 and 2010 Master Plans, the proposed 2013 Master Plan would not result in any impacts to agricultural resources or conflict with existing zoning for timberlands, forest lands or agricultural use.

C. AIR QUALITY

Air quality in the project area was evaluated with regard to the South Coast Air Quality Management District CEQA Air Quality Handbook, the National Ambient Air Quality Standards, and the California Ambient Air Quality Standards and the Clean Air Act (CAA).

Data on existing air quality conditions in the South Coast Air Basin (SCAB), in which the campus is located, are monitored by a network of air monitoring stations operated by the California Environmental Protection Agency, the California Air Resources Board (CARB), and the SCAQMD. The air quality assessment considers all phases of project planning, construction, and operation. The conclusions reflect guidelines outlined in the SCAQMD CEQA Air Quality Handbook.

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to air quality was evaluated in relation to five questions recommended for consideration by the State California Environmental Quality Act (CEQA) Guidelines.

(a) Would the 2013 Master Plan conflict with or obstruct implementation of the applicable air quality plan?
(b) Would the 2013 Master Plan violate any air quality standard or contribute substantially to existing or projected air violation?
(c) Would the 2013 Master Plan result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?
(d) Would the 2013 Master Plan expose sensitive receptors to substantial pollutant concentrations?
(e) Would the 2013 Master Plan create objectionable odors affecting a substantial number of people?

6 U.S. Environmental Protection Agency. “National Ambient Air Quality Standards (NAAQS).” Air and Radiation. Available at: http://www.epa.gov/air/criteria.html
Construction-Related Air Quality Impacts

The 2010 Master Plan extended the construction period compared to what was identified in the 2005 FEIR. Completion of the 2005 Master Plan construction was anticipated to take five years and extend through 2010; completion of the 2010 Master Plan was anticipated to extend through 2013.

Timing of construction activities has been revised again and the amount of building area to be constructed has been reduced. Construction of the 2013 Master Plan is anticipated to extend through the end of 2016.

The 2010 SEIR contained an air quality analysis assuming worst case overlap of building construction with construction of the Allied Health and Wellness, TLC building, Watson Center and the North Parking Structure all being under construction at the same time. Table 3-1 shows anticipated peak day construction emissions for simultaneous construction of these buildings.

<table>
<thead>
<tr>
<th>TABLE 3-1: 2010 MASTER PLAN PEAK-DAY CONSTRUCTION EMISSIONS (pounds per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Category</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Peak Year</td>
</tr>
<tr>
<td>SCAQMD Significance Thresholds for Construction</td>
</tr>
<tr>
<td>Significant?</td>
</tr>
</tbody>
</table>

Under the 2010 Master Plan, emissions of NOx would exceed SCAQMD thresholds. In addition, since most of the PM10 and PM2.5 emissions would be on-site the 2010 Master Plan was also anticipated to exceed SCAQMD localized significance thresholds for PM10 and PM2.5 (5 lbs and 4 lbs per day respectively with sensitive receptors located within 25 meters). Since the 2013 Master Plan would result in substantially reduced new construction, emissions would be reduced as the result of less simultaneous construction activity. Nonetheless it can be reasonably anticipated that NOx emissions could exceed SACQAQMD thresholds but not to the same extent as would have occurred under the 2010 Master Plan.

Operational Air Quality Impacts

As discussed in Section 2, Project Description, student enrollment is not anticipated to reach campus build-out until about 2036. Therefore mobile operational impacts would not reach the levels previously anticipated for 2022 until 2036. By that time emission controls are anticipated to be substantially improved compared to today and even compared to anticipated emissions in 2022. Therefore at build-out mobile emissions would be less than anticipated in the 2010 SEIR. In addition, since the building area would be less under the 2013 Master Plan, and because the buildings include numerous energy saving features, operational emissions would be less than those that would have occurred under the 2010 Master Plan and would be similar or less than those anticipated for the 2005 Master Plan.
D. BIOLOGICAL RESOURCES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to biological resources was evaluated in relation to six questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

(b) Would the 2013 Master Plan have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

(c) Would the 2013 Master Plan have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

(d) Would the 2013 Master Plan interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

(e) Would the 2013 Master Plan conflict with any local policies or ordinances protecting biological resources, such as tree preservation policy or ordinance?

(f) Would the 2013 Master Plan conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

Construction

Biological impacts anticipated to occur on the campus under the proposed 2013 Master Plan would be similar to those identified in the 2010 SEIR and 2005 FEIR. Removal of existing vegetation and trees to construct proposed campus facilities would not be a significant biological impact as there are no special-status plant species known to be present on the campus and the campus is already substantially disturbed in the area of the construction sites (most construction activities would occur in parking lot areas). The only foreseeable impact to biological resources with regards to wildlife due to the construction of the proposed on-campus facilities and improvements is the potential to remove or destroy potential bird nesting or roosting sites as a consequence of tree removal or other construction activities. Required mitigation measures would address this impact and reduce it to a less than significant level. Construction impacts of the 2013 Master Plan on biological resources would be similar to the impacts described in the 2010 SEIR and 2005 FEIR.

Operation

Operation of the proposed on-campus facilities and improvements would not have a significant impact on vegetation or special-status plant species.

Similar to the 2010 Master Plan, the only foreseeable impact to wildlife due to the operation of the proposed on-campus facilities and improvements is the possibility that increased nighttime lighting associated with new facilities, and the improvements could “harass” bird species (particularly raptors) resulting in nest abandonment. If new lighting results in substantial spillover impacts on the adjacent Baldwin Hills, adversely affecting habitat use or resulting in nest abandonment by special-status bird species, the impact would be significant. Implementation of Mitigation Measure BR-9 (preparation of a
lighting plan in consultation with the City of Culver City and adjacent Homeowner associations (HOAs)) would reduce the impact to a less than significant level. The Lighting Plan was completed in 2010.

As indicated in the 2010 SEIR, no federal wetlands or state streambeds occur within the Campus. The man-made concrete-lined drainage channel west of Freshman Drive (owned by the County of Los Angeles) could be considered waters of the U.S. under the jurisdiction of the U.S. Army Corps of Engineers. However, no substantial changes or significant impacts are anticipated to this drainage channel.

Operational impacts of the 2013 Master Plan on biological resources would be similar to the impacts described in the 2005 FEIR. Increased nighttime lighting from campus buildings could disturb nesting birds species on-campus and adjacent properties. In addition traffic on College Boulevard could significantly impact adjacent species. College Boulevard was completed in 2010 and any impacts to biological resources would not change as a result of the 2013 Master Plan.

E. CULTURAL RESOURCES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to cultural resources was evaluated in relation to four questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?
(b) Would the 2013 Master Plan cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?
(c) Would the 2013 Master Plan directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?
(d) Would the 2013 Master Plan disturb any human remains, including those interred outside of formal cemeteries?

The 2013 Master Plan would make minor campus circulation changes and reduce the amount of development as compared to what was analyzed in the 2010 SEIR. As under the 2005 and 2010 Master Plans, demolition and construction would occur at a number of locations on the Campus. The 9-acre property located at 10100 Jefferson Boulevard would remain largely unused with the construction management offices and a new entry sign.

There are no identified historic structures on the WLAC campus. As with the 2005 and 2010 Master Plans, the 2013 Master Plan would not affect any historic structures.

Impacts to cultural resources under the 2013 Master Plan would be similar to impacts identified for the 2005 and 2010 master Plans. Significant impacts to cultural resources are not anticipated. However, if archaeological resources were discovered during construction activities, required mitigation measures would continue to mitigate any potential impacts resulting from the 2013 Master Plan.

F. ENERGY

Energy consumption for the 2013 Master Plan was evaluated with regard to Appendix F, Energy Consumption, of the State California Environmental Quality Act (CEQA) Guidelines. The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to energy consumption was evaluated in relation to two questions:
(a) Would the 2013 Master Plan conflict with adopted energy conservation plans?
(b) Would the 2013 Master Plan use non-renewable resources in a wasteful and inefficient manner?

Not including parking space, the new building area to be added to the Campus would be reduced from 527,100 square feet (sf) to: 1) 194,437 sf of facilities already completed, plus 2) 153,180 sf of newly proposed buildings (of which 80,000 sf are not currently funded or scheduled for construction), for a total of 347,617 sf of new building area -- 179,483 sf less than was contemplated in the 2010 SEIR. In total, the proposed 2013 Master Plan would result in 122,461 sf less building area on-campus than was contemplated in the 2010 Master Plan and associated 2010 SEIR (and 35,091 sf more area than was analyzed in the 2005 FEIR). With less building area the 2013 Master Plan would result in less consumption of energy for building cooling and heating.

Additionally, The Los Angeles Community College District Board of Trustees, at its March 6, 2002, meeting, adopted a sustainable building plan that requires new buildings built with Proposition A funds to include “green” design features to conserve resources and promote a cleaner environment. The “green” design elements are based on the national Leadership in Energy & Environmental Design (LEED™) sustainable building standards. The College intends to plant water efficient landscaping and install high efficiency fixtures. These strategies would further reduce the demand on the water supply/energy distribution systems. The remaining new buildings including TLC 2 and WC 2 are planned to be LEED Platinum, therefore energy consumption would be reduced compared to non-LEED-rated buildings.

Full occupancy of the campus is not anticipated to occur until 2036, therefore mobile trip energy use would not occur as quickly as the assumptions in the 2010 Draft SEIR. In addition by 2036 the vehicle fleet is anticipated to be more energy efficient. Therefore, total energy use under the 2013 Master Plan would be less than would have occurred under the 2010 Master Plan.

G. GEOLOGY AND SOILS

Impacts to geology and soils within the project area were evaluated with regard to the most recent Alquist-Priolo Earthquake Fault Zoning maps. The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to geology and soils was evaluated in relation to eight questions recommended for consideration by the State California Environmental Quality Act Guidelines:

(a) Would the 2013 Master Plan expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
 i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.
 ii) Strong seismic ground shaking?
 iii) Seismic-related ground failure, including liquefaction as delineated on the most recent Seismic Hazards Zones Map issued by the State Geologist for the area or based on other substantial evidence of known areas of liquefaction?
 iv) Landslides as delineated on the most recent Seismic Hazards Zones Map issued by the State Geologist for the area or based on other substantial evidence of known areas of landslides?
(b) Would the 2013 Master Plan result in substantial soil erosion or the loss of topsoil?
(c) Would the 2013 Master Plan be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the proposed ordinance, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?
(d) Would the 2013 Master Plan be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?
(e) Would the 2013 Master Plan have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

Construction

Native soils on-site, as well as fill slopes constructed with native soils, have a moderate to high susceptibility to erosion. These materials are prone to erosion during grading, especially during heavy rains. As with the 2010 Master Plan, implementation of required storm water pollution prevention using erosion control Best Management Practices (BMPs) would reduce soil erosion impacts of the 2013 Master Plan to a less-than-significant level.

No further alteration of the topography beyond that analyzed in the 2010 SEIR is anticipated on the campus as a result of the 2013 Master Plan.

Operation

No change in operational erosion or seismic impacts would result from the 2013 Master Plan as compared to the impacts analyzed in the 2010 SEIR.

The southwest corner of the College campus, as well as the area where the secondary access road (College Boulevard) intersects with Jefferson Boulevard, has a moderate to high potential for liquefaction. The remainder of the site has a low to moderate potential for liquefaction. Required mitigation measures and compliance with building codes would continue to reduce any potential impacts to a less than significant level.

H. GREENHOUSE GAS (GHG) EMISSIONS

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts due to GHG emissions was evaluated in relation to two questions recommended for consideration by the State CEQA Guidelines.

(a) Would the 2013 Master Plan generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

(b) Would the 2013 Master Plan conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Greenhouse gas (GHG) emissions were not addressed in the 2005 FEIR. No thresholds of significance have yet been adopted by SCAQMD, the City of Culver City, the County of Los Angeles or the City of Los Angeles. The California Air Resources Board (CARB), Office of Planning and research (OPR) and the South Coast Air Quality Management District (SCAQMD) suggest a variety of methods for analyzing greenhouse gas emissions including qualitative analysis. The West Los Angeles College Master Plan (both the 2005 and 2010 versions) represents a continuation of an existing use and is therefore accounted for and consistent with existing local and regional planning documents. Full occupancy of the campus is not anticipated to occur until 2036, therefore mobile energy use will not occur as quickly as could have occurred following the assumptions in the 2010 Draft SEIR. By 2036 the vehicle fleet is anticipated to be more energy efficient. Furthermore the College provides educational facilities in close proximity to communities with a demand for such facilities. With increased availability of transit in the area, including the Metro Expo line and new bicycle lanes and paths, the College anticipates that an increasing proportion of students and staff will use alternate modes of transportation to get to and from the campus, thus reducing the generation of GHGs.
The College is exploring alternative energy options including provision of all or at least a majority of campus demand for electricity from solar power. The 2013 Master Plan would result in less demand for energy as compared to the 2010 Master Plan and therefore would result in fewer greenhouse gas emissions.

The Los Angeles Community College District Board of Trustees, at its March 6, 2002, meeting, adopted a sustainable building plan that requires new buildings built with Proposition A funds to include “green” design features to conserve resources and promote a cleaner environment. The “green” design elements are based on the national Leadership in Energy & Environmental Design (LEED™) sustainable building standards. The College intends to plant water efficient landscaping and install high efficiency fixtures. These strategies would further reduce the demand on the water supply/energy distribution systems. The remaining new buildings including TLC 2 and WC 2 are planned to be LEED Platinum, therefore energy consumption would be reduced, and greenhouse gas emissions would be similarly reduced compared to non-LEED-rated buildings.

I. HAZARDS AND HAZARDOUS MATERIALS

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts related to hazards and hazardous materials was evaluated in relation to the six (applicable) questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

(b) Would the 2013 Master Plan create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

(c) Would the 2013 Master Plan emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

(d) Would the 2013 Master Plan be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

(g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

(h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Construction – Hazards and Hazardous Materials Impacts

As most of the existing campus buildings were constructed between the early 1970s and the 1980s, a potential exists for asbestos containing materials (ACMs) and lead-based paints to be present within the buildings. Damaged ACMs could pose a potential threat to building occupants, as well as to construction workers during demolition or renovation work, if the material becomes airborne. Without mitigation, this is a potentially significant impact. Mitigation measures included in the 2010 SEIR would reduce this potential impact to a less than significant level.

The campus is located immediately south and west of the active Baldwin Hills oil fields. As indicated in the 2010 SEIR, there is a low to moderate possibility that oil field gas (commonly methane) and volatile organic compounds (VOCs) have migrated beneath the project area from the adjacent oil fields. If
encountered or exposed during construction, oil field gases or VOCs could pose a hazard to construction workers or other persons in the vicinity of the construction site, a potentially significant impact.

Additionally, heavy metals, biocides, and explosive gases (methane) may be present near wells and/or the associated production or reservoir sumps, which are commonly used as disposal sites for the drilling muds and other debris. If these hazardous materials are encountered or exposed during construction, the impact would be potentially significant.

Impacts to hazardous materials under the 2013 Master Plan would be similar to those anticipated for the 2010 Master Plan in the 2010 SEIR. It is not expected that the waste clarifiers, underground storage tanks (USTs) and buildings where hazardous materials are stored for routine use or maintenance would pose a significant hazard during construction on or near these sites. Mitigation included in the 2010 SEIR would continue to apply to the 2013 Master Plan.

Operation – Hazards and Hazardous Materials Impacts

Operational impacts would be similar to those anticipated to occur under the 2010 Master Plan. Operation of new and/or renovated buildings on the campus would not involve the use of significant quantities of hazardous materials or emissions above and beyond the current uses that could result in a reasonably foreseeable upset or accident. Therefore, the 2013 Master Plan would not have the potential to create a significant hazard to the public or environment as a result of its implementation. Operation of the campus would continue to involve the use, disposal and transport of small quantities of hazardous materials and emissions from routine maintenance and operation of various types of equipment and facilities currently on-site. The 2013 Master Plan would not result in a significant increase in the use of hazardous materials on the site, and would not result in a significant hazard to the public or environment through the routine use and handling of hazardous materials provided that proper handling procedures are followed.

While the College is not known to produce radiological hazards, any biological or chemical materials handled by the College in fulfillment of its educational mission are subject to federal, state, and local regulations, and will continue to be handled accordingly.

As indicated in the 2010 SEIR, a Phase 1 Environmental Site Assessment for the 10100 Jefferson Boulevard property indicated a low likelihood that a recognized environmental condition exists at the property as a result of a known and reported release at the property. However, this previous release represents a historically recognized environmental condition that must be considered with respect to future use of the 10100 Jefferson Boulevard property. A total of 29 operating, shut down, or abandoned oil wells were interpreted to be located at or within 50 feet of the 10100 Jefferson Boulevard property. Any wells found on the 10100 Jefferson Boulevard property may need to be abandoned or re-abandoned in accordance with the Department of Oil, Gas, and Geothermal requirements. If any wells exist on the 10100 Jefferson Boulevard site, soil could be contaminated. Extensive soil staining was observed in 2005. A drainage pond was observed in the southern portion of the 10100 Jefferson site. Based on the interpretive use of the drainage pond, there is a moderate to high likelihood that contamination is present in that area. There is also a potential that unidentified historical underground structures are present at the 10100 Jefferson Boulevard property.

While the campus is located adjacent to open space uses east of the campus, the open space uses do not carry an extensive load of fuel and substantial fire hazard is not anticipated.
J. HYDROLOGY AND WATER QUALITY

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts related to hydrology and water quality was evaluated in relation to ten questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan violate any water quality standards or waste discharge requirements?
(b) Would the 2013 Master Plan substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?
(c) Would the 2013 Master Plan substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner, which would result in substantial erosion or siltation on- or off-site?
(d) Would the 2013 Master Plan substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner, which would result in flooding on- or off-site?
(e) Would the 2013 Master Plan create or contribute runoff water, which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?
(f) Would the 2013 Master Plan otherwise substantially degrade water quality?
(g) Would the 2013 Master Plan place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or dam inundation area as shown in an adopted Safety Element of a General Plan or other flood hazard delineation map?
(h) Would the 2013 Master Plan place within a 100-year flood hazard area structures which would impede or redirect flood flows?
(i) Would the 2013 Master Plan expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?
(j) Would the 2013 Master Plan result in inundation by seiche, tsunami, or mudflow?

Construction – Hydrology and Water Quality Impacts

Surface Water

Impacts to hydrology anticipated to occur on the campus under the proposed 2013 Master Plan would be similar to those identified for the 2010 Master Plan. The 2013 Master Plan would include less developed area as compared to the 2010 Master Plan. Construction of a temporary parking lot at the 10100 Jefferson Boulevard site could impact surface water. Application of approved BMPs included in the 2010 SEIR would ensure that construction water quality impacts on surface waters on the campus and the 10100 Jefferson Boulevard site would be less than significant.

Groundwater

Impacts of the 2013 Master Plan would be similar to impacts of the 2010 Master Plan. Water used to construct proposed facilities and improvements at the campus and on the 10100 Jefferson Boulevard property would be obtained from the local water purveyor and not from local groundwater supplies. Thus, construction would not substantially deplete groundwater supplies. Any potential adverse impacts to groundwater quality would be reduced to a less than significant level with implementation of BMPs identified in required Storm Water Pollution Prevention Plans (SWPPPs), which would be developed by
each construction contractor to comply with National Pollution Discharge and Elimination System (NPDES) General Construction Permit requirements.

Drainage

Construction impacts would be similar to those anticipated for the 2010 Master Plan. During construction, changes to local drainage patterns due to earthmoving activities, stockpiling of soil, and/or removal and replacement of existing storm drains would occur in order to construct the new Master Plan facilities on the College campus and at the 10100 Jefferson Boulevard property. Such impacts would be minor and temporary. Implementation of BMPs would also help ensure potential impacts on the storm drain system during construction would be minimized.

Flood Hazards

The campus and 10100 Jefferson Boulevard property both are located outside the 100-year floodplain. No impacts related to the construction of the proposed facilities and improvements are anticipated.

Operation – Hydrology and Water Quality Impacts

Surface Waters

Construction of proposed Master Plan facilities would increase the amount of impervious surfaces but less than would have occurred under the 2010 Master Plan. To reduce potential water quality impacts to surface waters, the College would require contractors to implement BMPs in compliance with SWPPPs and as applicable the Standard Urban Stormwater Mitigation Plan (SUSMP) requirements. Accordingly, proposed facilities and improvements would comply with design guidelines to reduce polluted runoff from new parking lots and impervious surfaces. As required by mitigation measure SW-3 a storm water detention facility was recently (October 2013) constructed on the soccer field (soil was excavated to a depth of about 8 inches across the entire soccer field and removed from the center of the field and mounded around the soccer field to a height of 6 inches to create a detention basin 14 inches in depth). This facility will serve to retain water on-site during high-rainfall events, thereby reducing potential flooding on campus and downstream while ensuring the recharging of the groundwater table.

Groundwater

Operation of the proposed on-campus facilities and improvements would not deplete local groundwater supplies because no groundwater wells would be installed or pumped as part of the proposed project. Adherence to all applicable permits in the operational phase and implementation of required BMPs to treat runoff to remove pollutants to the greatest extent possible would ensure that water quality impacts on local groundwater would be less than significant.

Drainage

Operation of the proposed facilities and improvements would not have a significant impact on storm water drainage system capacity. Required mitigation measures, BMPs and compliance with Low Impact Design Standards would mitigate impacts related to drainage under the proposed 2013 Master Plan. On-site storm water management techniques would allow for infiltration of water (in the new storm water detention basin on the soccer field) as well as treatment of water before it enters the drainage system. It is the intent of the campus to detain on-site the volume of water produced by a 0.75 inch storm event. In addition the College plans to resurface many of the existing paved areas with environmentally sensitive pervious surfaces, further reducing runoff while improving ground water table recharge.
K. LAND USE AND PLANNING

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts related to land use and planning was evaluated in relation to three questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan physically divide an existing community?
(b) Would the 2013 Master Plan conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?
(c) Would the 2013 Master Plan conflict with any applicable habitat conservation plan (HCP) or natural community conservation plan (NCCP)?

Under state law, buildings and facilities at a WLAC are generally subject to zoning limitations imposed by Los Angeles County. However, the District may exempt classroom facilities from local zoning control. The College may also apply for a conditional use permit or variances for proposed facilities that do not comply with existing zoning regulations.

As stated above the campus is located within unincorporated Los Angeles County; the 9-acre entry parcel at 10100 Jefferson Boulevard is located within Culver City. The campus is located within two County of Los Angeles zoning designations, R-1, Single Family Residential, and A2, Agricultural. The northeast portion of the site is located in the A-2 zone; the remainder of the campus lies within the R-1 zone. The Los Angeles County General Plan designates the College as Public and Semi-Public Facilities, P. The 10100 Jefferson Boulevard property is designated Industrial and located within the special studies area of Blair Hills/Baldwin Hills. This property is zoned IG- Industrial General. The IG zoning district is applied to areas appropriate for a wider variety of industrial uses including outdoor activities, but not heavy industrial uses.

Building heights of proposed buildings would be less than anticipated in the 2010 SEIR. In the 2010 SEIR, one building (TLC) was anticipated to reach 7 stories and 135 feet tall. The new TLC 2 would reach four stories and 75 feet tall and would be located in the center of campus with buildings of similar use and height.

The height limit in the zoning code is 35 feet; as noted above, educational buildings may be exempted from local zoning controls. Given the location of the new structures and their distance from off-campus residential uses, significant impacts to offsite sensitive land uses are not anticipated. Consequently, the proposed new structures would not materially conflict with the intent of the zoning code. The facilities proposed under the 2013 Master Plan are all located within the main campus and would be consistent and compatible with existing academic facilities on the campus.

The temporary parking use at the Jefferson Boulevard entrance would be compatible with adjacent uses including the temporary construction office and industrial and office uses.

Impacts to land use under the 2013 Master Plan would be similar to impacts identified in the 2010 SEIR. Significant impacts to land use are not anticipated. Similar to the 2010 Master Plan, the proposed 2013 Master Plan would continue the existing college use and would be compatible with surrounding uses.

Proposed changes between the 2010 Master Plan and 2013 Master Plan would result in the construction of less building area.

Land use impacts of the 2013 Master Plan would be similar to those described in the 2010 SEIR. There are no plans for development of the 10100 Jefferson Boulevard site beyond entry sign and construction management trailers. Once plans for this site are developed, further environmental review will be undertaken for that site, including land use compatibility analyses.

L. MINERAL RESOURCES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to mineral resources was evaluated in relation to two questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
(b) Would the 2013 Master Plan result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

Currently, the campus does not contain areas that are used or likely to be used for surface mining of any minerals. The 9-acre 10100 Jefferson Boulevard site has been used for oil extraction related uses in the past. Under the proposed 2013 Master Plan, the 10100 Jefferson Boulevard site could be used for temporary parking (in addition to the current construction management trailers and associated parking). Required mitigation would continue to address impacts related to possible disruption of pipelines during construction activities associated with the 2013 Master Plan.

M. NOISE

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts related to noise was evaluated in relation to the four (applicable) questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
(b) Would the 2013 Master Plan result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?
(c) Would the 2013 Master Plan result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?
(d) Would the 2013 Master Plan result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Not including parking space, the new building area to be added to the Campus would be reduced from 527,100 square feet (sf) to: 1) 194,437 sf of facilities already completed, plus 2) 153,180 sf of newly proposed buildings (of which 80,000 sf are not currently funded or scheduled for construction), for a total of 347,617 sf of new building area -- 179,483 sf less than was contemplated in the 2010 SEIR. In total, the proposed 2013 Master Plan would result in 122,461 sf less building area on-campus than was contemplated in the 2010 Master Plan and associated 2010 SEIR (and 35,091 sf more area than was analyzed in the 2005 FEIR). As a result of the reduced scope of construction, construction noise impacts would be less, overall, than those anticipated for the 2010 Master Plan.
The sound walls around the exterior of campus would remain as at present (see Figure 2-8). In the 2010 Master Plan interior sound walls were proposed west of the TLC construction area (to shield interior college buildings from construction noise) and south of the then-proposed North parking Structure construction area. Neither of these buildings is included in the 2013 Master Plan and therefore the construction sound walls are not necessary.

The new TLC building (TLC 2) would be located west of the center of campus in existing parking Lot 5 and is separated from the main campus by approximately 30 feet in elevation difference. This elevation difference would help shield campus buildings to the east from initial construction noise. The new Watson building would be located approximately in the same location as previously proposed but would be substantially smaller in size (16,000 sf as compared to the 60,000 sf building anticipated in the 2010 Master Plan).

In general, construction activity would be further from sensitive receptors than anticipated in the 2010 SEIR. The Allied Health and Wellness Building was a large (141,000 sf) building proposed along Freshman Drive approximately 150 feet from nearby residences. This project has been cancelled. As part of the 2013 Master Plan, construction staging for a 4,000 sf Central Plant would be located along Freshman Drive immediately south of the lockers and staging for the 41,000 sf TLC 2 would be located in Lot 5. Construction staging for the 7,500 sf facilities warehouse and relocation of Bungalow R 7 would be located in Lot 7 (in the same location as staging identified in the 2010 SEIR).

Construction of the 7,500 sf facilities warehouse (30 feet tall) would occur over approximately one year in the southeastern corner of campus; relocation of Bungalow R7 would occur over the course of four months. Construction activity in this area would be approximately 130 feet to 150 feet from condominiums in the Lakeside Villas development and construction in this area as well as construction staging in Lot 7 would be approximately 170 to 200 feet from single-family homes in the Culver Crest area. Noise from construction activities in this area would be no more intrusive than from residential construction (such as construction of a single-family home).

Noise levels associated with different pieces of equipment are shown in Table 3-2 below; noise levels at different distances from active construction sites are shown in Table 3-3 below.

Not included in Table 3-2 is noise from a soil compactor, equipment that is anticipated to be used on most construction sites. The Federal Highways Administration (FHA) indicates on their web site that

10 Mark Salkin’s house is located in the Culver Crest neighborhood. In 2010 WLAC agreed to study noise impacts at Mr. Salkin’s house. Mr. Salkin’s house is buffered somewhat by berms as well as the temporary sound wall. Construction activities associated with the 7,500 sf facilities warehouse, and relocation of the 1,907 sf R7 Bungalow would be the most audible activities at Mr. Salkin’s house. Both buildings are relatively small and peak construction activities would be of relatively short duration (these construction activities would be no more intrusive than construction of a single-family home). Mr. Salkin’s house would be approximately 160 feet from construction staging activities, where the loudest noise would be from truck activity – a peak of 88 dBA at a distance of 50 feet from the source. At a distance of 160 feet (Mr. Salkin’s house), the noise level due to truck activity would be approximately 79 dBA if the sound wall were not in place. The sound wall would reduce the sound level to 63 dBA to 73 dBA (see discussion of noise wall effectiveness). Mr. Salkin’s house would be approximately 270 feet from activities associated with relocation of the R7 Bungalow and approximately 330 feet from construction activities associated with the facilities warehouse. Peak noise levels from the approximately two to three weeks of grading associated with the warehouse would be 59 dBA to 69 dBA at Mr. Salkin’s house (with the sound walls in place). Peak noise levels associated with the approximately two to three weeks of exterior work associated with the R7 Bungalow relocation would be approximately 57 to 67 dBA with the sound walls in place. The calculated noise levels are conservative estimates based on attenuation due to geometric spreading and the effect of the temporary sound wall. Additional attenuation would be provided by the intervening terrain, which includes a berm that disrupts a line-of-sight between the construction noise sources and Mr. Salkin’s residence, and several areas of soft ground and vegetation that would also absorb some noise due to the ground effect.
noise levels from soil compactors have been measured to be 83 dBA at 50 feet. The 2010 SEIR (Table 3.15-2, see Table 3-3 below) identifies anticipated noise levels from construction sites when several pieces of equipment are operating simultaneously. The noise levels anticipated during construction at individual construction sites would be similar to those indicated in Tables 3-2 and 3-3.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Typical Noise Level (dBA) 50 Feet from Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressor</td>
<td>81</td>
</tr>
<tr>
<td>Backhoe</td>
<td>80</td>
</tr>
<tr>
<td>Concrete Mixer</td>
<td>85</td>
</tr>
<tr>
<td>Concrete Pump</td>
<td>82</td>
</tr>
<tr>
<td>Concrete Vibrator</td>
<td>76</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>85</td>
</tr>
<tr>
<td>Excavator/Shovel</td>
<td>82</td>
</tr>
<tr>
<td>Generator</td>
<td>81</td>
</tr>
<tr>
<td>Grader</td>
<td>85</td>
</tr>
<tr>
<td>Loader</td>
<td>85</td>
</tr>
<tr>
<td>Paver</td>
<td>89</td>
</tr>
<tr>
<td>Scraper</td>
<td>89</td>
</tr>
<tr>
<td>Truck</td>
<td>88</td>
</tr>
</tbody>
</table>

Note: Sound at any receptor depends on the height differential between the source and the receiver; the complexity of the source, e.g., several construction vehicles operating simultaneously versus a single operating vehicle; the noise generating mechanisms of the vehicles, including the engines, brakes, 12-foot high exhausts, back-up beepers, etc.; the state of operation, such as traveling at a constant velocity versus accelerating up a hill; and the topography separating the sources from each receiver.

Source: Federal Transit Administration 1995

Table 3-3 below does not take into account noise amelioration anticipated to result from the temporary sound walls or other mitigation measures included in the EIR. In addition, the calculated noise levels in Table 3-3 are for hard surfaces and the surfaces between the some sites and nearby sensitive receptors are soft (grass and dirt). Therefore Table 3-3 represents conservative estimates of noise levels from construction activities for this project.

A limited noise test was undertaken in July 2013 at the existing soccer field (see Figure 3-1 below). A backhoe was operated in an area directly west of the soccer field and noise measurements were taken along Freshman Drive on both sides of the sound wall, at a distance of approximately 600 feet from the backhoe. The backhoe began operation after 12:00 pm. As can be seen on the chart below, the noise levels did not change substantially. The peaks in noise are from passing traffic and the sound walls reduce noise by 6 dBA to 16 dBA. Noise levels averaged about 61 dBA to 62 dBA with or without the backhoe in operation including contributions from background noise sources – mainly traffic on Freshman Drive. The backhoe's backup alarm was not active at any time during the test. Backup alarms on construction equipment are designed to be noticeable. As such they are often a source of annoyance to sensitive receivers.

The 2010 SEIR found construction noise impacts to be significant because of the extended duration. However, since 2010, construction activities have been substantially less than anticipated in the 2010 SEIR because construction has not occurred at the pace anticipated.

TABLE 3-3:
CONSTRUCTION NOISE AND ESTIMATED CONSTRUCTION NOISE IN THE VICINITY OF AN ACTIVE CONSTRUCTION SITE (FOR PURPOSES OF ILLUSTRATION)

<table>
<thead>
<tr>
<th>Noise Sources:</th>
<th>Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Condition: Site leveling</td>
<td></td>
</tr>
<tr>
<td>Source 1: Bulldozer - Sound level (dBA) at 50 feet =</td>
<td>85</td>
</tr>
<tr>
<td>Source 2: Truck - Sound level (dBA) at 50 feet =</td>
<td>88</td>
</tr>
<tr>
<td>Source 3: Scraper - Sound level (dBA) at 50 feet =</td>
<td>89</td>
</tr>
<tr>
<td>Average Height of Sources - Hs (ft) =</td>
<td>10</td>
</tr>
<tr>
<td>Average Height of Receiver - Hr (ft) =</td>
<td>5</td>
</tr>
<tr>
<td>Ground Type (soft or hard) =</td>
<td>Hard</td>
</tr>
<tr>
<td>Calculated Noise:</td>
<td></td>
</tr>
<tr>
<td>All Sources Combined - Sound level (dBA) at 50 feet =</td>
<td>92</td>
</tr>
<tr>
<td>Effective Height (Hs+Hr)/2 =</td>
<td>7.5</td>
</tr>
<tr>
<td>Ground factor (G) =</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance Between Source and Receiver (ft)</th>
<th>Geometric Attenuation (dB)</th>
<th>Ground Effect Attenuation (dB)</th>
<th>Calculated Sound Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>100</td>
<td>-6</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>200</td>
<td>-12</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>300</td>
<td>-16</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>400</td>
<td>-18</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>500</td>
<td>-20</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>600</td>
<td>-22</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>700</td>
<td>-23</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>800</td>
<td>-24</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>900</td>
<td>-25</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>1,000</td>
<td>-26</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>1,200</td>
<td>-28</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>1,400</td>
<td>-29</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>1,600</td>
<td>-30</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>1,800</td>
<td>-31</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>2,000</td>
<td>-32</td>
<td>0</td>
<td>60</td>
</tr>
</tbody>
</table>

Calculations based on FTA 1995. This calculation does not include the effects, if any, of local shielding that may reduce sound levels.

Note: Sound at any receptor depends on the height differential between the source and the receiver; the complexity of the source, e.g., several construction vehicles operating simultaneously versus a single operating vehicle; the noise generating mechanisms of the vehicles, including the engines, brakes, 12-foot high exhausts, back-up beepers, etc.; the state of operation, such as traveling at a constant velocity versus accelerating up a hill; and the topography separating the sources from each receiver.

Source: Myra L. Frank, Jones & Stokes, 2005 FEIR
Truck Traffic

The original noise modeling assumed operational traffic conditions associated with a student population of 18,904. In Fall 2012, 8,233 on-campus students were enrolled at WLAC. The noise analysis predicted that none of the receivers at the Raintree complex would experience a cumulative increase in noise exposure of greater than 1 dBA to the hourly time averaged noise levels as a result of College-related non-construction traffic from West Los Angeles College even in the absence of a sound wall.

Modeling of truck traffic under worst-case conditions (60 heavy trucks per hour plus 10 medium trucks per hour) indicated that the cumulative increase in the hourly Leq would not exceed 3 dBA at all of the modeled receptors in the Raintree development (with or without the temporary sound walls). The existing six-foot sound wall is predicted to reduce hourly averaged noise levels by approximately 1 to 2 dBA at some sensitive receptors within the Raintree complex, and the temporary sound walls should provide some additional noise reduction at some sound receptors. In addition, individual trucks using College Boulevard would produce transient noise increases of greater than 3 dBA above ambient levels and would be audible to residents in the Raintree development. Under worst-case conditions these transient noise peaks would occur once per minute.

The current configuration of permanent and temporary noise walls is shown in Figure 2-8; the sound walls would be in place during the period when construction traffic occurs, and through the completion of construction. Fabric covering the gate in the permanent sound wall is subject to wear and tear through use.
and will be inspected every 6 months (or as needed) and it will be replaced if worn to the point where it no longer provides intact sound insulation.

Truck traffic anticipated to be associated with the 2013 Master Plan construction and construction-related activity would be within anticipated activity levels (and therefore within noise levels) identified in the 2010 SEIR and the Settlement Agreement with the City of Culver City.

The 2010 SEIR found operational traffic to be significant. The 2013 Master Plan would result in less building construction than was anticipated in the 2010 SEIR. However, construction activities would extend over an additional three years. While the noise levels associated with the 2013 Master Plan would be similar to or less than those anticipated to occur under the 2010 Master Plan, the extended low-level construction activity could be annoying to some of the more sensitive adjacent residents. However, impacts are not anticipated to be substantially greater than anticipated in the 2010 SEIR because of the overall substantial reduction in building area to be constructed.

N. POPULATION AND HOUSING

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to population and housing was evaluated in relation to three questions recommended for consideration by the State California Environmental Quality Act (CEQA) Guidelines.

(a) Would the 2013 Master Plan induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

(b) Would the 2013 Master Plan displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

(c) Would the 2013 Master Plan displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

Impacts to population and housing under the 2013 Master Plan would be similar to those under the 2010 Master Plan. The 2013 Master Plan would not generate substantial population growth or demand for housing. The 2013 Master Plan would not displace people or houses. In general the 2013 Master Plan would meet an existing demand for educational facilities. There would be incrementally fewer construction jobs and/or shortening of jobs already on-site due to the reduced development on the campus.

O. PUBLIC SERVICES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to public services was evaluated in relation to one question (relevant to each public service) recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services listed below.

i) Fire protection

ii) Libraries

iii) Parks
iv) Police protection

v) Schools

vi) Other public facilities

In general, the demand for public services is proportional to on-site population (enrollment) and/or building area. Full student enrollment is not anticipated until 2036 (although other uses also are present on-campus, see Section 2.0 Project Description, discussion of other on-campus uses). In addition the total developed area on-campus would be less under the 2013 Master Plan as compared to the 2010 Master Plan. In total, the 2013 Master Plan would result in 122,461 sf less building area on-campus than was contemplated in the 2010 SEIR (and 35,091 sf more area than was analyzed in the 2005 FEIR). Therefore, demand for public services would be the same or less than anticipated in the 2010 SEIR. As a result of the anticipated student and staff projections, impacts of the 2013 Master Plan on public services would be similar to those anticipated in the 2010 SEIR, except that demand would occur later than previously anticipated. The mitigation measures from the 2010 SEIR would continue to apply.

P. RECREATION

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to recreation was evaluated in relation to two questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

(b) Would the 2013 Master Plan include recreational facilities or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment?

The West Los Angeles College campus includes a number of recreational opportunities including existing sports fields. The 2010 Master Plan proposed substantial enhancements to those facilities (new Allied Health and Wellness building, new bleacher seating, sports field lighting, etc.) that would have been accessible to the community. These enhancements are not included in the 2013 Master Plan. The West Los Angeles College continues to provide recreational opportunities to its students and makes available these facilities to the community when they are not in use by the College. College activities would not result in increased demand on facilities outside the College campus. Impacts as a result of use of existing on-campus facilities would not change substantially as a result of the 2013 Master Plan.

Q. TRANSPORTATION AND CIRCULATION

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts related to transportation and traffic was evaluated in relation to six (applicable) questions recommended for consideration by the State California Environmental Quality Act Guidelines.

(a) Would the 2013 Master Plan conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

(b) Would the 2013 Master Plan conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other
standards established by the county congestion management agency for designated roads or highways?

(d) Would the 2013 Master Plan substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

(e) Would the 2013 Master Plan result in inadequate emergency access?

(f) Would the 2013 Master Plan result in inadequate parking capacity?

(g) Would the 2013 Master Plan conflict with adopted policies, plans, or programs regarding public transit, bicycle or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

As discussed above, occupancy of the WLAC campus is not anticipated to occur until 2036 as a result of State Budget constraints. Therefore, traffic impacts are anticipated to occur over a longer time period rather than by the year 2022 (as contemplated in the 2010 Draft SEIR). The mitigation measures included in the 2010 SEIR will continue to be implemented as needed to reduce impacts from increased on-campus enrollment. Traffic impacts are dependent on 1) the number of students on campus and 2) the % of on-campus students who drive. Both of these numbers are subject to change over time as on-line courses become more popular and as more students use transit, carpools or alternative modes of transportation. The 2010 SEIR Mitigation Monitoring Plan (MMRP) indicated that mitigation of intersections in the City of Los Angeles (Measure T-7A) would occur prior to occupancy of the last building. Full occupancy of the last building may not occur for many years if at all. Therefore the timing of implementation of Measure 7A is revised to be: Measures shall be implemented prior to the number of new trips from WLAC reaching a level that would impact each intersection.12

The 2013 Master Plan includes an updated vehicular circulation plan (see Figure 2-7). No hazardous design features are introduced. Circulation and traffic safety would be improved under the 2013 Master Plan. The proposed 2013 Master Plan continues to be compatible with surrounding uses in that it satisfies a demand for further education in the area. The 2013 Master Plan continues to provide circulation and emergency access throughout the campus.

The demand for parking in 2010 was one space per seven enrolled students. WLAC is committed to maintaining this ratio of parking unless and until another parking study documents reduced demand. The Parking Plan for the 2013 Master Plan (see Figure 2-6) identifies 2,487 parking stalls that would be sufficient for 17,409 students (and associated faculty and staff). Fall 2012 on-campus enrollment was 8,233.

Using the parking demand data from the 2010 SEIR, 8,233 students generates a demand 1,190 spaces from students, faculty and staff. On-campus leased uses currently generate a demand for an estimated 153 spaces, plus the use of the 396 spaces in Lot 7 by Miller Toyota for a total of 473 spaces used by leases on the campus. Construction worker parking would generate a demand for up to 100 spaces on the campus. There are currently 2,283 parking spaces available on campus. As construction progresses, surface parking lots would be needed for construction staging resulting in the temporary removal of up to 490 spaces leaving a minimum of approximately 1,793 spaces. 1,793 spaces would be sufficient for 11,851 on-campus students plus 100 construction workers. Lease uses would be terminated as needed to ensure sufficient parking for College users and construction workers.

12 A study to determine when mitigation would be required for the six intersections in the City of Los Angeles identified in the 2005 Final EIR and 2010 SEIR as impacted by the Master Plan and requiring mitigation (based on current trip generation rates) indicates that mitigation measures would be needed as follows: Jefferson/National -- 2021/2022; Jefferson/Higuera -- 2024/2025; La Cienega/Jefferson -- 2029/2030; La Cienega/Rodeo -- 2029/2030; La Cienega/Fairfax -- 2029/2030; one measure -- La Cienega/Centinela -- may never be needed if on-campus enrollment does not exceed 15,300.
Full occupancy of the campus is anticipated to be 15,300 on-campus students, which is not anticipated to occur until 2036. The proposed parking supply is more than sufficient to meet anticipated demand. It is anticipated that students, faculty and staff will increase use of transit and bicycles (as a result of increased transit opportunities, including the new Exposition Line – Phases 1 and 2, and increased availability of bicycle lanes and paths), and that demand for parking will drop. WLAC will continue to monitor parking uses to ensure that parking is provided commensurate with demand.

The 2013 Master Plan includes increased accessibility for buses and provides bicycle parking. It also includes improved path of travel for pedestrians in navigating this topographically challenging campus (see Figure 2-6). The new elevator facility to be included in TLC 2 would improve access between the lower (parking and athletic fields level) and upper classroom levels.

The 2013 Master Plan would not interfere with any adopted plans, or programs regarding public transit, bicycle or pedestrian facilities, or otherwise decrease the safety or performance of such facilities.

R. UTILITIES

The potential for the 2013 Master Plan to result in new or substantially more adverse significant impacts to utilities and service systems was evaluated in relation to seven questions recommended for consideration by the State California Environmental Quality Act (CEQA) Guidelines.

(a) Would the 2013 Master Plan exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?
(b) Would the 2013 Master Plan require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
(c) Would the 2013 Master Plan require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
(d) Would the 2013 Master Plan have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?
(e) Would the 2013 Master Plan result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments?
(f) Would the 2013 Master Plan be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs?
(g) Would the 2013 Master Plan comply with federal, state, and local statutes and regulations related to solid waste?

As for public services, in general, the demand for utilities is proportional to on-site population (enrollment) and/or building area. Full student enrollment is now not anticipated until 2036 (although other uses also are present on-campus, see Section 2.0 Project Description, discussion of other on-campus uses). In addition the total developed area on-campus would be less under the 2013 Master Plan as compared to the 2010 Master Plan. In total, the 2013 Master Plan would result in 122,461 sf less building area on-campus than was contemplated in the 2010 SEIR (and 35,091 sf more area than was analyzed in the 2005 FEIR). Further, the campus would implement energy improvements that would reduce energy consumption (demand-side management). Therefore, demand for utilities would be the same or less than anticipated in the 2010 SEIR. As a result of the anticipated student and staff projections, impacts of the 2013 Master Plan on public services would be similar to those anticipated in
the 2010 SEIR, although the demand would occur later than previously anticipated. The mitigation measures from the 2010 SEIR would continue to apply.

Water

MWD supplies are becoming increasingly constrained as a result of increasing regulation and rainfall shortages. The 2013 Master Plan would result in a decrease in developed area compared to the 2010 Master Plan and would continue to include water conservation features. Water demand is based on student population, and as discussed above, full occupancy of the campus is not anticipated to occur until 2036.

Wastewater

The 2013 Master Plan would result in a decrease in developed area compared to the 2010 Master Plan and would continue to include water conservation features that will lead to less wastewater generation. Additionally, wastewater is based on student population, and since the full on-campus population is not anticipated to occur until 2036, wastewater impacts would be less than anticipated in the 2010 SEIR for some period of time until full occupancy is achieved (2036).

Solid Waste

The 2013 Master Plan would result in a decrease in developed area compared to the 2010 Master Plan and would continue to include solid waste recycling leading to less solid waste generation. Additionally, solid waste is based on student population, and since the full on-campus population is not anticipated to occur until 2036, solid waste impacts would be less than anticipated in the 2010 SEIR for some period of time until full occupancy is achieved (2036).

Storm Water

As discussed above, a new on-site storm water detention facility was recently completed in the area of the sports fields along Freshman Drive. Required mitigation measures, BMPs and compliance with Low Impact Design Standards would mitigate impacts related to drainage under the proposed 2013 Master Plan. On-site storm water management techniques would allow for infiltration of water (in the new storm water detention basin on the soccer field) as well as treatment of water before it enters the drainage system. It is the intent of the campus to detain on-site the volume of water produced by a 0.75 inch storm event.

4.0 CONCLUSION

As discussed above, while the proposed 2013 Master Plan would result in construction activities extending through the end of 2016 as compared to the end of 2013 that was discussed in the 2010 SEIR, overall construction impacts would be less because less new building area would be constructed resulting in less construction activity. However, the reduced level of construction activity would be spread over a greater period of time resulting in annoyance to neighbors as a result of temporary sound walls remaining in place approximately three years longer than anticipated and other associated construction-related activities which can annoy and disturb sensitive members of the community. While these activities could be annoying to some, they would not rise to the level of new significant impacts that were not addressed in the 2010 SEIR.
5.0 REFERENCES

6.0 LIST OF PREPARERS

West Los Angeles College

Steve Sharr, CPM

Sirius Environmental

Wendy Lockwood, Principal

Zack Dennis, Noise Analyst

KOA Corporation

Brian Marchetti, Vice President, Senior Transportation Planner
TABLE OF CONTENTS

Part 1: Introduction
- Acknowledgments
- Purpose of the Master Plan Update
- Abbreviations

Part 2: Existing Campus Conditions
- Current Campus Map
- Campus Setting & Organization
- Existing Buildings and Landscape

Part 3: Planning Criteria
- Service Area
- Previous Approved Master Plan
- Growth Trends
- Facility Utilization

Part 4: Facilities Master Plan
- Master Plan Strategies
- Organizational Diagrams
- Descriptive Plans & Charts

Part 5: Prioritization & Project Descriptions
- Funded Projects
- Future Projects

Part 6: Design Guidelines
PART 1

Introduction
ACKNOWLEDGEMENTS

WEST LOS ANGELES COLLEGE
Nabil Abu-Ghazaleh, President
Ken Takeda, Vice-President of Administrative Services
Phyllis Braxton, Vice-President of Student Services
Robert Sprague, Vice-President of Academic Affairs

LACCD BOARD OF TRUSTEES
Miguel Santiago, President
Scott J. Svonkin, Vice-President
Mike Eng
Mona Field
Ernest H. Moreno
Nancy Pearlman
Steve Veres
Michael J. Griggs, Student Trustee

LACCD ADMINISTRATION
Dr. Adriana D. Barrera, Interim Chancellor
Bobbi Kimble, Interim Vice Chancellor for Educational Programs and Institutional Effectiveness
Dr. Felicito Cajayon, Vice Chancellor for Economic and Workforce Development
Jeanette Gordon, Chief Financial Officer/Treasurer
Camille A. Goulet, General Counsel
James D. O’Reilly, Chief Facilities Executive

PROGRAM MANAGER
Build LACCD
• Terri Mestas, Program Director, AECOM

COLLEGE PROJECT MANAGER
Cumming Construction Management
• Steve Sharr, CPM Director

PLANNING TEAM
West Edge Architects
• Peter Mitsakos, Principal
• Douglas Newby
• Juan Pagan

CONSULTANTS
Sirius Environmental
• Wendy Lockwood

DESIGN GUIDELINES
Part 6 of this document was originally established in the West Los Angeles College Campus Master Plan & Landscape Guidelines, Spring 2010, as authored by:

• DLR Group WWCOT
• Ahbe Landscape Architects
PURPOSE OF THE MASTER PLAN UPDATE

• Align college facilities planning with needs identified in the Educational Master Planning process
• Match facility performance to the requirements of identified needs
• Plan for optimal utilization rates
• Design for flexible teaching space and facilitate diverse pedagogies
• Minimize cost of ownership by limiting footprint and updating existing facilities
• Establish infrastructure/technology for the future
• Optimize student engagement and provide communal, public space
• Advance program adjacencies and reinforce campus academic core
• Integrate accessibility into design
• Respond to critiques of construction agenda
PURPOSE OF THE MASTER PLAN UPDATE Cont’d

• Build for 2026, plan through 2036
 • Maintain CEQA compliance
 • Support growth across College without over-building
 • Support projected growth rates across campus to 2026
 • No programs underserved
 • Projected 2036 capacity demands not provided “too early”
 • Allows for future State funding
 • Provide foundation for next master-planning agenda
• Remain consistent with a 45-Year history of long outlook, pragmatic development
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-9/A-10</td>
<td>A-9/A-10 Bungalows</td>
</tr>
<tr>
<td>A-15</td>
<td>A-15 Bungalow</td>
</tr>
<tr>
<td>A-16</td>
<td>A-16 Bungalow</td>
</tr>
<tr>
<td>AHW</td>
<td>Allied Health & Wellness Center</td>
</tr>
<tr>
<td>AMPH</td>
<td>Amphitheater</td>
</tr>
<tr>
<td>AT-A</td>
<td>Aviation Technology ‘A’ Building</td>
</tr>
<tr>
<td>AT-B</td>
<td>Aviation Technology ‘B’ Building</td>
</tr>
<tr>
<td>AT-C</td>
<td>Aviation Technology ‘C’ Building</td>
</tr>
<tr>
<td>B-1</td>
<td>B-1 Bungalow</td>
</tr>
<tr>
<td>B-4</td>
<td>B-4 Bungalow</td>
</tr>
<tr>
<td>B-5</td>
<td>B-5 Bungalow</td>
</tr>
<tr>
<td>B-6</td>
<td>B-6, B-7, B-12 Bungalows</td>
</tr>
<tr>
<td>C-1</td>
<td>C-1 Bungalow</td>
</tr>
<tr>
<td>C-2</td>
<td>C-2 Bungalow</td>
</tr>
<tr>
<td>C-3</td>
<td>C-3 Bungalow</td>
</tr>
<tr>
<td>CE</td>
<td>Career Education Building</td>
</tr>
<tr>
<td>CDC</td>
<td>Child Development Center</td>
</tr>
<tr>
<td>CP</td>
<td>Central Plant</td>
</tr>
<tr>
<td>CPAC</td>
<td>Community Performing Arts Center</td>
</tr>
<tr>
<td>CP-N</td>
<td>Central Plant North</td>
</tr>
<tr>
<td>DS</td>
<td>Dance Studio</td>
</tr>
<tr>
<td>FA-A</td>
<td>Fine Arts ‘A’ Building</td>
</tr>
<tr>
<td>FA-B</td>
<td>Fine Arts ‘B’ Building</td>
</tr>
<tr>
<td>FOB</td>
<td>Faculty Office Building</td>
</tr>
<tr>
<td>GC</td>
<td>General Classroom Building</td>
</tr>
<tr>
<td>GS</td>
<td>Grandstand</td>
</tr>
<tr>
<td>HLRC</td>
<td>Heldman Learning Resource Center</td>
</tr>
<tr>
<td>MSA</td>
<td>Math & Science ‘A’ Building</td>
</tr>
<tr>
<td>MSB</td>
<td>Math & Science ‘B’ Building</td>
</tr>
<tr>
<td>NPS</td>
<td>North Parking Structure</td>
</tr>
<tr>
<td>PEC</td>
<td>Physical Education Complex</td>
</tr>
<tr>
<td>PEC-N</td>
<td>Physical Education Complex North</td>
</tr>
<tr>
<td>PEC-S</td>
<td>Physical Education Complex South</td>
</tr>
<tr>
<td>PFC</td>
<td>Plant Facilities Center</td>
</tr>
<tr>
<td>PFW</td>
<td>Plant Facilities Warehouse</td>
</tr>
<tr>
<td>R-7</td>
<td>R-7 Bungalow</td>
</tr>
<tr>
<td>SC</td>
<td>Science Center</td>
</tr>
<tr>
<td>SPS</td>
<td>South Parking Structure</td>
</tr>
<tr>
<td>SS</td>
<td>Student Services Building</td>
</tr>
<tr>
<td>SSA</td>
<td>Student Services Annex</td>
</tr>
<tr>
<td>SU</td>
<td>Student Union</td>
</tr>
<tr>
<td>TLC</td>
<td>Technology Learning Center</td>
</tr>
<tr>
<td>TLC2</td>
<td>Technology Learning Center 2</td>
</tr>
<tr>
<td>WC</td>
<td>Watson Center</td>
</tr>
<tr>
<td>WC2</td>
<td>Watson Center 2</td>
</tr>
</tbody>
</table>
PART 2

Existing Campus Conditions
Current Campus Map (2013)
See ‘Abbreviations’ on page 7 for full building names
The West Los Angeles College campus is located on 72 acres in unincorporated Los Angeles County amidst the gently sloping Baldwin Hills. The campus is bordered by Culver City to the west, the northwest, and the south. The northeastern side of the campus borders the Baldwin Hills. Residential areas are adjacent to the campus immediately to the west and south.

The campus was founded in 1969, with construction on permanent campus buildings beginning in 1973. To make the sloping campus site buildable, terraces were cut into the hillside in the early 1970s. These terraces have provided building sites for the college, but contribute accessible circulation challenges.
The HLRC Building is a four-level structure that houses the library and learning center. It was one of the first buildings on the West Los Angeles College campus.

The CE Building is a two-level classroom and office building that connects to the HLRC via an enclosed, sun-screened bridge.

The MS-A & MS-B Building is a five-level 86,000 square-foot building at the eastern edge of the campus. The building contains classrooms, labs, offices, and a dental clinic.

The Student Services (SS) Building is a four-level building near the center of campus and accessible from ‘B’ Street. The building contains office space for non-academic departments, the campus bookstore, and Café West.

The General Classroom (GC) Building is a four-level building near the center of campus and accessible from ‘B’ Street. It contains classrooms and office space.
The Aviation Technology Complex (AT-A, AT-B, & AT-C Buildings) is located in the northern portion of campus along ‘B’ Street. It contains classrooms, office space, and specialized labs for both the Aviation and Motion Picture Television Production programs.

The Physical Education Complex (PEC) is located west of ‘B’ Street and houses the College’s physical education and athletics programs. The building is adjacent the campus’ athletic fields.

The SC Building is a one-level structure located east of the CE Building and just north of the MS-A Building. It houses office space, classrooms, and labs.

The FA Complex comprises the FA-B Building (a three-level structure that contains offices, classrooms, and fine art studios) and the FA-A Building (a one-level structure that contains a theater and exhibition hall).
The CDC Building is a one-level structure that houses the campus’ Child Development Center. It is located in the southern portion of campus and is largely isolated from other campus buildings.

The South Parking Structure is a four-level structure that accommodates approximately 1,000 parking stalls. It is located at the southeast corner of the campus and is the campus’ largest parking asset.

The Plant Facilities Buildings (A15/16) is a complex of one-level structures located at the southwest corner of campus. They accommodate office and shop space for Facilities Maintenance and Operations.
The temporary bungalow buildings made up the majority of the WLAC campus for much of the College’s history. It has been a long-term goal of the campus to remove all bungalow buildings in favor of permanent structures like the SS and GC Buildings. While the majority of the bungalows have now been removed, the A9/10, B1, B4, B5, and B6 Bungalows remain to the north of the CE and SC Buildings.
The WLAC Plaza is a gently sloping hardscape framed by the SS and GC Buildings. It contains pedestrian walkways, several planters, and a dining terrace for Café West.

President’s Lane is a linear pedestrian plaza that serves as the primary north-south circulation spine for the campus. It is flanked to the west by the FA Complex, HLRC Building, and CE Building, and to the east by the MS-A and MS-B Buildings.

The Fine Arts Courtyard is a small grassy courtyard, surrounded by concrete walkways and a row of trees. It is enclosed by the FA Buildings on three sides.

The Graduation Lawn is a large, level field directly north of the SS Building and is used formally for commencement ceremonies.

The Leifer Mall is a level plaza to the west of the CE Building. It contains several large trees, sitting areas, and views to the Santa Monica Mountains.
PART 3

Planning Criteria

Note: For additional information, see the 2012-13 West Los Angeles College Program Review
WLAC serves the basic skills, general education, CTE, STEM, and transfer needs of West and South Los Angeles.

Local & Regional Industries Served
- Film/Entertainment
- Business/Telecom/Network Services
- Aviation/Airports/Tourism
- Legal Services
- Health Services
- Law Enforcement & Training
- Art Gallery Row
- Business
- Child Development
Reference Documents

Educational Master Plan

• Required by California Community College Chancellor’s Office
• Developed and managed by the College
• Current plan for period 2009-2014
• “Growth Trends” are Phase 1 of the Educational Master Plan, 2014-19
• Phase 2 of the Educational Master Plan in progress (2013-14): programs and processes to implement Phase 1 and achieve educational attainment.
Reference Documents

Short-Range Facilities Master Plan (Operations)

• Required by California Community College Chancellor’s Office
• Developed and managed by the College
• Required to support the Educational Master Plan
• Requires Facilities Master Plan & Oversight Committee Approval
• Date Completed: October 2, 2013
Reference Documents

Current/Approved 2009 Long-Range Facilities Master Plan (Construction)

- Reasons to update Long-Range Facilities Master Plan
 - BOT rule 2605.1 / Admin Reg B-24 / Ed Code 70902
 - Incorporates changes generated by Education Master Plan
 - Updated to reflect Short-Range Facilities Master Plan
 - Revised to include building name changes
- Date approved by Board of Trustees – August 2010
- Planning up to 2022
Previously Approved 2009 Long-Range Facilities Master Plan

See ‘Abbreviations’ on page 7 for full building names

On August 11, 2010, the LACCD Board of Trustees
1. Approved the 2009 WLAC Facilities Master Plan Update
 (as Revised June 2010)
2. Certified the Final Supplemental Environmental Impact Report
Previously Approved 2009 Long-Range Facilities Master Plan

Completed Projects

Math and Science Building (MSA/MSB)
An 86,000 square-foot building at the eastern edge of the campus near Sophomore Drive. The building is five stories and includes office space and specialized labs for the Science and Math Divisions, a Dental Hygiene Clinic, general lecture space, and support spaces such as meeting rooms, lounges, and exhibition spaces.

Student Service Building (SS)
A 56,000 square-foot building near the center of campus, accessed from ‘B’ Street. The building is four stories and includes office space for non-academic departments such as Financial Aid, Assessment, and Admissions and Records. The campus bookstore and Café West are located on the ground level of the building.

General Classroom Building (GC)
A 50,000 square-foot building near the center of campus, accessed from ‘B’ Street. The building is four stories and includes general lecture classrooms and office space for the Behavioral & Social Sciences and Language Arts Divisions.

South Parking Structure (SPS)
A 301,700 square-foot, 4-level parking structure that accommodates approximately 1,000 parking stalls. The building is located in the Southeast corner of the campus, accessed by Albert Vera Drive and ‘C’ Street.

Grandstand (GS)
A 1,400 seat grandstand with press box. The project also includes restrooms and a concession stand.

Cancelled Projects

North Parking Structure (NPS)
A 420,000 square-foot, seven level parking structure capable of accommodating 1,458 parking stalls. The structure was to be located at the Northeast corner of campus with access from Sophomore Boulevard.

Plant Facilities Center (PFC)
A 33,000 square-foot maintenance facility that was to be located at the north Northeast corner of campus with access from Sophomore Drive. The facilities were to house Plant Facilities offices and shops.

Watson Center (WC)
A 60,000 square-foot building that was to be located east of the Aviation Technology complex. The program was to include:
• 325 seat theater with proscenium arch and fly
• Sound Stage
• HCPR Shops and Labs to teach the studio trades
• Classrooms

Technology Learning Center (TLC)
A 87,500 square-foot, seven-story building that was to be located across President’s Lane from the Fine Arts complex. The project included general lecture classrooms, the campus data center, a digital library, office space for the Business and Computer Science Divisions, and the office suites for Academic Affairs and the President’s Office.

Cancelled Projects Cont’d

Allied Health & Wellness Center (AHW)
The project was comprised of a main building as well as grandstands, storage, and restrooms. The project was to be located on a 20.5 acre site at the west edge of campus. The project included:
• A 141,000 square-foot, 3-level building including office and instructional spaces for the Allied Health, Physical Education, and Athletics Divisions. The project also included a basketball arena and an indoor pool.
• Baseball Field with grandstand seating for 700. A 7,500 square-foot space for dugouts, restrooms, concessions, storage, and viewing was also included.
• Softball Field with grandstand seating for 400. A 1,400 square foot space for dugouts and storage was also included.
• An approximately 400 square foot Restroom Building.
• Soccer Field
• Intramural Field
• Two Outdoor Basketball Courts
• Outdoor Pool with grandstand seating for 260.

Student Union (SU)
A 12,000 square foot, two-level building at the center of directly Northwest of the existing ‘CE’ Building. The facility was to include spaces for the Associated Student Organization and Student Health Center.
SUMMARY OF FACILITIES ASSESSMENT

- A large number of instructional spaces are currently under-utilized because the size, configuration, and technology capabilities do not match the facilities requirements established through Program Review and the Educational Master Plan:
 - 28 General Lecture Rooms
 - 5 General Laboratory Rooms
 - 3 Specialized Laboratory Rooms
- The majority of existing under-utilized spaces may be readily remodeled into “needed” spaces but may not be suitable for conversion to highly specialized labs.
- Original campus buildings are substandard in a number of areas, including:
 - IT/AV Capabilities
 - Wear and Tear
Existing Assignable Square Footage

All Totals Include “Service Spaces”

Campus ASF Total: 373,035
Campus GSF Total: 865,713
Assignable Square Footage

Instructional Facilities
159,723 Sq. Ft.

- General Lecture: 59,495 Square Feet
- General Lab: 26,001 Square Feet
- Specialized Lab: 47,623 Square Feet
- Physical Education: 26,604 Square Feet

Facilities Do Not Meet Needs Established by the Ed. Master Plan

Space Type Index
1. General Lecture-90 Station
2. General Lecture-60 Station
3. General Lecture-50 Station
4. General Lecture-Other
5. General Lab-Sciences
6. General Lab-Arts
7. General Lab-Computer Labs
8. General Lab-Other
9. Allied Health-Dental Clinic
10. Allied Health-Mock Medical Exam
11. Aviation & Travel-Aircraft Hangar
12. Aviation & Travel-Composite Materials
13. Aviation & Travel-Electrical
14. Aviation & Travel-Engine Test
15. Aviation & Travel-Fuel & Ignition
16. Aviation & Travel-Hydraulics
17. Aviation & Travel-Non-Destructive Testing
18. Aviation & Travel-Propellers
19. Aviation & Travel-Turbine Engines
20. Aviation & Travel-Welding
21. Behavioral & Social Sciences-Child Development Lab
22. Computer Science-Computer Labs
23. Humanities & Fine Arts-Art Studio (Ceramics)
24. Humanities & Fine Arts-Art Studio (Graphic Design)
25. Humanities & Fine Arts-Black Box Theater
26. Humanities & Fine Arts-MPTP Computer Lab
27. Humanities & Fine Arts-MPTP Costume Shop
28. Humanities & Fine Arts-MPTP Prop Shop
29. Humanities & Fine Arts-CBI (Computer Lab)
30. Humanities & Fine Arts-Ensemble Rehearsal
31. Humanities & Fine Arts-Group Rehearsal Rooms
32. Humanities & Fine Arts-Individual Rehearsal Rooms
33. Humanities & Fine Arts-Piano Instruction
34. Science-Anatomy Lab
35. Science-Chemistry (Inorganic)
36. Science-Chemistry (Organic)
37. Science-Microbiology
38. Gymnasium
39. Multi-Purpose (Aerobics)
40. Pool
41. Strength & Conditioning
CURRENT & PROJECTED INSTRUCTIONAL FACILITY NEEDS

*NOTE: Facility Supply, Defined as the Inverse of Minimum Utilization Rates for Instructional Facilities, which are based on the Board of Governors of the California Community Colleges Policy on Utilization and Space Standards
College Space Needs Provided by the 2013 Construction Master Plan Update

PROGRAM LIST
1a Classroom-90 Station
1b Classroom-60 Station
1c Classroom-50 Station
1d Classroom-25 Station
1e Computer Lab-50 Station
1f Traditional Lab-25 Station
1g Specialized Lab
2 Academic Division Office Suites
3 Non-Academic Office Suites
4 Campus Services & Resources

ABBREVIATIONS LIST

ACADEMIC AFFAIRS
- (AA) Academic Affairs
- (AH) Allied Health
- (AT) Aviation & Travel
- (BS) Behavioral & Social Sciences
- (BU) Business
- (CCV) Campus & Community Village
- (CS) Computer Science
- (DL) Distance Learning
- (HF) Humanities & Fine Arts
- (LA) Language Arts
- (LC) Learning Center
- (LIB) Library & Learning Resources
- (MA) Mathematics
- (PL) Office of Planning & Research
- (SC) Science
- (WE) Westside Extension

ADMINISTRATIVE SERVICES
- (AS) Administrative Services
- (BO) Business Office
- (EM) Enterprise Management
- (IT) Information Technology
- (PF) Plant Facilities
- (PP) Personnel & Payroll
- (SO) Security Office

STUDENT SERVICES
- (AR) Admissions & Records
- (AM) Assessment & Matriculation
- (ASO) Assoc. Student Organization
- (ATH) Athletics
- (CDC) Child Development Center
- (CO) Counseling

GENERAL COLLEGE
- (ATFF) ATF-Faculty
- (ATFS) ATF-Staff
- (ASEN) Academic Senate
- (PRES) President’s Office

LEGEND
- Department Identifier, see Abbreviations List
- Construction Project Req’d to Completely Meet Need
- Need Completely Met by Existing Asset(s)
- Program Type Identifier, see Program List

Note: Each “box” represents a single instance of a particular “space type”.
PART 4

Facilities Master Plan
SUMMARY OF MASTER PLAN STRATEGIES

- Remodel Under-Utilized or Inactive Spaces
- Limit New Construction to Unique, Specialized Spaces
- Locate Programs to Improve Departmental Cohesion and Inter-Departmental Synergies
- Provide a Student-centric Campus Environment
- Eliminate Temporary Modular Buildings and 1969 Bungalow Buildings
- Eliminate the Need for Swing Space
- Design within Budget and Prioritize Projects to Guard Against Contingencies
See ‘Abbreviations’ on page 7 for full building names
2013 Facilities Master Plan Update

View of Proposed Campus Core (East to West)
See ‘Abbreviations’ on page 7 for full building names.

LEGEND

- **RESTRICTED TRAFFIC**
- **VEHICULAR TRAFFIC (TWO-WAY)**
- **VEHICULAR TRAFFIC (ONE-WAY)**
- **STUDENT DROP-OFF**
- **BARRICADE (BOLLARDS)**
- **BUS STOP**
- **“STAND-ONE” ACCESSIBILITY DROP-OFF”**
- **ELECTRONIC SWING GATE & CALL BOX TO SHERIFF DEPARTMENT**
- **MANUAL SWING GATE**

Note: As of 2012, there is no accessible path of travel from Lots 5 or 7 to the rest of campus. “Stand-One” is a shuttle service that currently provides access from these lots to drop-off shown in the above graphic. Work associated with the ‘TLC 2’ project will address the existing path of travel deficiencies, at which point, the “Stand-One” service will cease.
See 'Abbreviations' on page 7 for full building names.
See 'Abbreviations' on page 7 for full building names.

LEGEND

- **FIRE LANE**
- **BARRICADE (BOLLARDS)**
- **ELECTRONIC SWING GATE & CALL BOX TO SHERIFF DEPARTMENT**
- **MANUAL SWING GATE**

General Note: Fire Department to be provided with all codes, keys, etc., as required to ensure access through traffic control devices.
2009 Facilities Master Plan

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>SIZE</th>
<th>CONSTRUCTION</th>
<th>PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
<td>1,458 Parking Stalls</td>
<td>Concrete Structure</td>
<td>Parking</td>
</tr>
<tr>
<td>PFC</td>
<td>33,600 GSF</td>
<td>Steel/Concrete Frame</td>
<td>FMO Offices & Workshops</td>
</tr>
<tr>
<td>WC</td>
<td>60,000 GSF</td>
<td>Steel/Concrete Frame</td>
<td>Performance Theater, Sound Stage, Motion Picture Television Production Shops, Computer Labs</td>
</tr>
<tr>
<td>TLC</td>
<td>87,500 GSF</td>
<td>Steel/Concrete Frame</td>
<td>General Lecture Rooms, Offices, Digital Library, IT Infrastructure, IT Training Facility</td>
</tr>
<tr>
<td>AHW</td>
<td>150,300 GSF</td>
<td>Steel/Concrete Frame</td>
<td>Physical Education, Athletic Fields, Administration of Justice, Allied Health, Offices</td>
</tr>
<tr>
<td>SU</td>
<td>12,000 GSF</td>
<td>Steel/Concrete Frame</td>
<td>Student Union</td>
</tr>
<tr>
<td>Campus Total GSF</td>
<td>823,667 GSF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2013 Facilities Master Plan

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>SIZE</th>
<th>CONSTRUCTION</th>
<th>PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
<td>202 Parking Stalls</td>
<td>Surface Parking</td>
<td>Parking</td>
</tr>
<tr>
<td>PFC</td>
<td>7,500 GSF</td>
<td>Tilt-Up/Prefab</td>
<td>Campus Storage</td>
</tr>
<tr>
<td>WC</td>
<td>16,000 GSF</td>
<td>Tilt-Up</td>
<td>Sound Stage & Motion Picture Television Production Shops</td>
</tr>
<tr>
<td>TLC</td>
<td>41,280 GSF</td>
<td>Steel/Concrete Frame</td>
<td>Computer Labs, Offices, IT Infrastructure</td>
</tr>
<tr>
<td>HLRC Renovation</td>
<td>16,800 NSF</td>
<td>Existing Facility Renovation</td>
<td>Offsets, Digital Library, Learning Center</td>
</tr>
<tr>
<td>AHW</td>
<td>7,575 NSF</td>
<td>Existing Facility Renovation</td>
<td>Allied Health, Offices</td>
</tr>
<tr>
<td>SC</td>
<td>7,400 NSF</td>
<td>Existing Facility Renovation</td>
<td>Science Labs</td>
</tr>
<tr>
<td>DS-Dance Studio Retain PEC</td>
<td>58,175 GSF</td>
<td>Existing Facility</td>
<td>Physical Education</td>
</tr>
<tr>
<td>SU</td>
<td>27,850 NSF</td>
<td>Existing Facility Renovation</td>
<td>ASO, Welcome Center, Student Health Center, Multi-Purpose Space, I.T. Training Facility</td>
</tr>
<tr>
<td>Campus Total GSF</td>
<td>690,492 GSF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART 5

Prioritization
& Project Descriptions
Priorities
Toward 2026 Instructional Space Needs

<table>
<thead>
<tr>
<th>Proposed Project</th>
<th>Program</th>
<th>Size</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Technology Learning Center 2 (TLC2)</td>
<td>(12) Computer Labs, Office Suites, Campus Security Office / EOC</td>
<td>41,280 Gross Square Feet</td>
<td>$17.99 M</td>
</tr>
<tr>
<td>2 Watson 2 (WC2)</td>
<td>Sound Stage, Motion Picture Television Production Shops</td>
<td>16,000 Gross Square Feet</td>
<td>$5.87 M</td>
</tr>
<tr>
<td>3 Dance Studios (DS)</td>
<td>Dance Studios, Dance Program Storage</td>
<td>4,400 Square Feet (NEW), 2,500 Square Feet (RENOVATION)</td>
<td>$2.20 M</td>
</tr>
<tr>
<td>4 MS-A Renovation (SMB)</td>
<td>Allied Health Instruction Labs & Office Suite</td>
<td>7,575 Square Feet</td>
<td>$2.13 M</td>
</tr>
<tr>
<td>5 SC Renovation (SC)</td>
<td>Mail Room & Reprographics</td>
<td>3,500 Square Feet</td>
<td>$0.94 M</td>
</tr>
<tr>
<td>6 B4 & B5 Bungalows (B4/B5)</td>
<td>Accessibility Upgrades to Existing Buildings: Elevator & Sloping Walks</td>
<td>N/A</td>
<td>$7.13 M</td>
</tr>
<tr>
<td>7 FMO-Warehouse (PFW)</td>
<td>General Campus Storage Facility</td>
<td>7,500 Gross Square Feet</td>
<td>$2.35 M</td>
</tr>
<tr>
<td>8 FMO-Office Expansion (R7)</td>
<td>Additional Office Suite for FMO through relocation of existing R7 Bungalow</td>
<td>1,820 Square Feet</td>
<td>$0.25 M</td>
</tr>
<tr>
<td>9 FA-B Renovation (FA-B)</td>
<td>Omni-Acoustical Performance Lab</td>
<td>2,165 Square Feet</td>
<td>$0.34 M</td>
</tr>
<tr>
<td>10 Central Plant - North (CP-N)</td>
<td>Chilled & Hot Water Production for North Campus Buildings</td>
<td>TBD</td>
<td>$2.12 M</td>
</tr>
<tr>
<td>11 Amphitheater (AMPH)</td>
<td>Amphitheater: reconfigure abandoned excavation site</td>
<td>No New Square Footage</td>
<td>$1.04 M</td>
</tr>
<tr>
<td>12 HLRC Renovation (HLRC)</td>
<td>Learning Center Expansion, Digital Library & Library Orientation Room, Office Suites</td>
<td>16,800 Square Feet</td>
<td>$5.11 M</td>
</tr>
<tr>
<td>13 CE Renovation (CE)</td>
<td>Associated Student Organization & Student Lounge, Student Health Center, Welcome Center</td>
<td>27,850 Square Feet</td>
<td>Planned but currently unfunded, pending availability of funds from anticipated cost savings, unexpended contingencies, and value engineering.</td>
</tr>
</tbody>
</table>
PROJECT SCOPE

- 41,280 Gross Square Feet in proposed 4-level structure.
- Build on flat site at East end of ‘Parking Lot 5’, avoiding slope between ‘B Street’ and ‘Parking Lot 5’.
- 15’-0” floor-to-floor height; proposed building’s 3rd level will be approximately even with ‘B Street’ and the plaza between the existing ‘Student Services’ and ‘General Classroom’ buildings.
- Pedestrian bridge to provide access to building from ‘B Street’ at 3rd level of proposed building.
- Remove existing sheriff station, eliminate existing access driveways along Freshman Drive, repair curbs and landscape, as required.
- Re-stripe ‘Parking Lot 5’ to provide and net-gain in total parking spaces.
- Proposed Program:
 1. (6) Specialized Computer Labs for Computer Science Division
 2. (6) General-Use Computer Labs
 3. Business Division Offices (*including Paralegal*)
 4. Computer Science Division Offices
 5. AFT Faculty, AFT Staff, and Academic Senate Offices
 6. Westside Extension
 7. I.T. Data Storage
 8. Sheriff’s Department & Emergency Operations Center

COST ESTIMATE: $17.99 M
WATSON 2

PROJECT SCOPE

- 16,000 Gross Square Feet in a proposed 1-level structure.
- Build on flat site at south end of ‘Parking Lot 2’.
- Modify south end of ‘Parking Lot 2’ to provide accessible connection across ‘E Street’.
- Provide accessible connection to existing ‘AT’ Building and Lot: stand alone elevator OR pedestrian bridge to 2nd level of existing ‘AT-A’ Building.
- Proposed Program:
 1. Motion Picture & Television Production (MPTP): Sound Stage, Shop, Prop House, Costume Lab, Faculty Offices, Restrooms, and Outdoor Work Areas.

COST ESTIMATE: $5.87 M
DANCE STUDIOS

COST ESTIMATE: $2.20 M

PROJECT SCOPE

- 2,500 square foot renovation in existing ‘PEC’ Building:
 1. Replace existing floor in Room 139 (PECS-A) with sprung-floor suitable for Dance instruction.
 2. Evaluate existing heating/cooling system, and provide new unit A/C system if required.
 3. Remove existing chalkboards and mirrors in Room 121 (PECS-C), as required to provide storage space for renovated Dance Studio in Room 139.

- 4,400 gross square feet in a proposed 1-level structure: Type V fully-sprinklered, assume truss joint (wood) roof structure, glu-lam beams, shaped roof, wood stud and stucco shear walls at perimeter, (2) glass garage doors, aluminum storefront.
 1. Build on flat site in existing ‘Parking Lot 4’.
 2. Orient building to maintain daylight and views from existing offices in East side of ‘PEC’ building.
 3. Provide sprung-floor suitable for dance instruction.
 4. 10’-6” minimum ceiling height, above finished floor (preferably not flat).

- Includes Dance Studio (3,600 SF) and Storage (600 SF).
- Site work (area of ‘Parking Lot 4’).
PROJECT SCOPE

- 2,200 square foot renovation on ground level of existing ‘MS-A’ Building:
 1. Remove interior partitions separating existing Rooms A010, A011, and A013.
 2. Provide new interior partition, patch ceiling and finishes, re-configure light fixtures, HVAC equipment, and fire sprinkler heads, as required to convert space into (2) 1,000 square foot Classrooms.
 3. Alter corridor-adjacent wall as required to provide access to renovated spaces.

- 5,375 square foot renovation on 1st level of existing ‘MS-A’ Building:
 1. Remove interior partition separating existing Rooms A109 & A112.
 2. Provide new interior partitions, patch ceilings and finishes, and re-configure light fixtures, HVAC supply & return outlets, sprinkler heads and other FLS systems, to provide Allied Health Division offices.
 3. Install new light fixtures, power & data, and electrical outlets for new office layout.
 4. Install stand-alone HVAC system to service office space and allow the rest of the MS-A Building to be shut-down during Summer and Winter terms.
 5. Remove interior partitions separating existing Rooms A102, A104, A105, and A106.

- Provide new interior partitions, patch ceilings and finishes, re-configure light fixtures, HVAC equipment, and sprinkler heads and other FLS systems, as required to provide proposed Allied Health Lab, Mock Medical Lab and dedicated storage for the Allied Health Division.

COST ESTIMATE: $2.13 M
SC Renovation

PROJECT SCOPE

- 3,500 square foot renovation on East side of existing ‘SC’ Building.
 1. Remove interior partitions separating existing Rooms 102, 103, and 104.
 2. Remove existing casework in Room 101.
 3. Expand existing opening through envelope into Room 103 on the South side of the building to accommodate a larger entry door.
 4. Patch/repair existing finishes, re-configure light fixtures, HVAC equipment, and sprinkler heads and other FLS systems, and provide new casework, as required to provide proposed Mailroom in existing Room 101.
 5. Provide new interior partitions, patch ceilings and finishes, re-configure light fixtures, HVAC equipment, and sprinkler heads and other FLS systems, as required to provide proposed Reprographics room and Faculty/Staff Workroom.

COST ESTIMATE: $0.94 M
B4 & B5 Bungalows

PROJECT SCOPE

- Provide new elevator and sloping walks, as required to provide access to 2nd levels of each bungalow.
- Proposed Program:
 1. Campus & Community Village (Grant Program Administration).
- Provide new laminated glass and aluminum sash entrance doors (4 at each building).

COST ESTIMATE: $7.13 M
(40J FUNDING)
FMO - Warehouse

PROJECT SCOPE

- 7,500 gross square feet in proposed 1-level warehouse building.
- Construct on flat site in ‘Parking Lot 6’.
- Maintain access to remaining parking spaces.

COST ESTIMATE: $2.35 M
FMO - Office Expansion

PROJECT SCOPE

- Move existing R-7 trailer from current site at East side of ‘Parking Lot 5’ to proposed location in ‘Parking Lot 6’.
- Provide new interior partitions, HVAC equipment, power & data, electrical outlets, light fixtures, etc., as required to accommodate office space for Facilities Maintenance Operations.
- Provide minimum outdoor improvements, as required.

COST ESTIMATE: $0.25 M
Multi-Purpose Acoustically Flexible Performance Space

PROJECT SCOPE

- Convert existing Room 104 in FA-B Building to Performance Space: 2,165 square feet.
- Remove existing ACT ceiling and floor finish.
- Paint existing walls to black finish.
- Provide new light fixtures & AV equipment, as required.

COST ESTIMATE: $ 0.34 M
Central Plant - North Campus

PROJECT SCOPE

- New building, sized as required to provide central plant for North Campus buildings (AT-A, AT-B, AT-C, PEC, & Watson 2).
- Plan and install CWS & HWS and return piping to listed structures.
- Demolish existing storage building at project site.
- Provide new storage, as required by FMO.

COST ESTIMATE: $2.12
Amphitheater

PROJECT SCOPE

- Re-grade to provide stable slope and provide 12' wide flat “benches” in slope at 1/3 points.
- Plant with grasses to provide outdoor congregation area along existing ‘President’s Lane’. Install irrigation system for planted (grass) slopes, upslope.
- Provide concrete pad and shade structure to accommodate exterior performances by music, theater, and dance departments.
- Provide electrical power to stage area.
- Provide pole mounted lighting for minimal exit level lighting.

COST ESTIMATE: $1.04 M
PROJECT SCOPE

- New elevator bank (2 cars) on North side of building to improve accessibility of building.
- 3,875 square foot renovation on 1st level of existing ‘HLRC’ Building:
 1. Remove existing interior partitions on east side of building (rooms 108, 109, 110, 111, and 112) and patch finishes, as required to expand ‘Learning Center’; 1,715 square feet.
 2. Maintain/protect existing Room 114 and adjacent elevator.
 3. Re-finish, provide new doors, ceiling, light fixtures, ducting, power, data, etc., as required to convert existing Room 115 into the ‘Digital Library’ or ‘Library Orientation’ room; 1,230 square feet.
 4. Remove interior partitions separating Rooms 123 and 124 from the existing ‘Learning Center’, build new interior partition, and re-finish space, as required to provide ‘Distance Learning’ office: 930 square feet.
- 1,675 square foot renovation on 2nd level of existing ‘HLRC’ Building:
 1. Remove existing partitions separating Rooms 218, 219, 220, 221, 222, and 223 in Southeast corner of building.
 2. Provide new partitions, ceiling, light fixtures, finishes, etc., as required to convert space into the ‘Digital Library’ or ‘Library Orientation’ room.
- 6,400 square foot renovation & 4,850 square feet of new construction on 4th level of existing ‘HLRC’ Building:
 1. Remove existing interior partitions separating Rooms 4-A, 4-B, 4-C, 4-D, and 4-E. Remove ceilings, lights, HVAC branches, as required.
 2. Provide new partitions, ceilings, light fixtures, mechanical equipment, plumbing, etc., as required to convert existing enclosed space into office space for ‘Academic Affairs’.
 3. New lightweight construction* on East and West roof terrace to provide office space for ‘President’s Office’ and ‘Academic Affairs’.

(*Steel truss roof structure, steel tube columns and diagonal braces, metal stud and stucco exterior walls, and aluminum storefront)
PROJECT SCOPE

- 25,500 square foot renovation & 2,350 square feet of new construction as part of a complete renovation of existing ‘CE’ Building.
- Maintain existing structure and envelope, unless noted otherwise.
- Enclose existing breezeway as double-height building entry.
- Provide new elevator and staircase, and improve existing restrooms in existing location as part of new building entry.
- Provide new HVAC system for entire building. Connect to Central Plant hot & chilled water).
- Replace existing stud and stucco, non-bearing exterior wall with aluminum storefront system along entire South facing portion and 30% of West facing portion of ground level envelope to provide access from existing ‘President’s Lane’ to proposed ‘PAW’s Convenience Store’ and ‘Student Lounge’.
- Patch/repair existing openings in building skin and provide new openings, as required to provide access for renovated interior layout.
- Proposed Program:
 1. Associated Student Organization
 2. Student Health Center
 3. Student Lounge
 4. PAW’s Convenience Store
 5. General-use multi-purpose space
 6. Welcome Center: prospective student orientation rooms, Outreach program offices, and computer carrels for on-line access to financial aid, class schedules, payments, etc.
 7. I.T. Department offices (long-term and data storage rooms to remain in B-6 Bungalow).
 8. Faculty & Staff Training Center
Projected Required Future Facilities (Beyond Current Bond Program)

See ‘Abbreviations’ on page 7 for full building names
<table>
<thead>
<tr>
<th>PROPOSED PROJECT</th>
<th>PROGRAM</th>
<th>SIZE</th>
<th>BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Faculty Office Building</td>
<td>(4) Computer Labs</td>
<td>43,000 Gross Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>Office Suites</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mail Room & Reprographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Student Service Annex</td>
<td>Learning Center</td>
<td>24,000 Gross Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>Assessment & Matriculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counseling Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Library Expansion</td>
<td>Reading Room Expansion</td>
<td>6,650 Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>Stacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study Rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 SC Renovation</td>
<td>(2) Specialized Science Labs</td>
<td>7,400 Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>(2) Traditional Science Labs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Community Performing Arts Center</td>
<td>Proscenium & Fly Tower</td>
<td>1,300 Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>Auditorium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Lobby</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dressing Rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 SS Renovation</td>
<td>Renovation of areas of building vacated by: 1. Assessment & Matriculation</td>
<td>9,450 Square Feet</td>
<td>Unfunded</td>
</tr>
<tr>
<td></td>
<td>2. Counseling Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Required to accommodate projected growth of: 1. Business Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Financial Aid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Admissions & Records</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. EOPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. DSP&S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Human Resources / Payroll / Purchasing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Faculty Office Building

PROJECT SCOPE

- 43,000 gross square feet in a proposed 4-level structure south of TLC 2 Building.
- Proposed Program:
 1. (4) General-use computer labs.
 2. Business Division Offices
 3. Humanities & Fine Arts Division Offices
 4. Language Arts Division Offices
 5. Grant Program Administration Offices
 6. Mailroom & Reprographics
Student Service Annex

PROJECT SCOPE

- 24,000 gross square feet in a proposed 2-level structure on East edge of existing ‘Graduation Lawn’.
- Proposed Program:
 1. Learning Center
 2. Assessment & Matriculation
 3. Counseling Department
Library Expansion

PROJECT SCOPE

- 6,650 square foot renovation on 1st level of existing ‘HLRC’ Building
- Proposed Program:
 1. Library Expansion into space vacated by ‘Learning Center’.
SC Renovation

PROJECT SCOPE

- Complete renovation of existing 'SC' Building: 7,400 square feet.
- Proposed Program:
 1. (2) Specialized Science Labs
 2. (2) Traditional Labs
Community Performing Arts Center

PROJECT SCOPE

- Maintain amphitheater slope, re-graded in Part 1 of the Construction Plan.
- Site new building to allow proscenium to serve both exterior-oriented performances to the amphitheater and interior-oriented performances to the auditorium.
PART 6

Design Guidelines
DESIGN GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

OUTLINE

I. Architectural Guidelines
II. Landscape Guidelines
III. Hardscape Guidelines
IV. Arts & Educational Opportunities
V. Sustainability Guidelines
VI. Lighting Guidelines
VII. Signage Guidelines
I. ARCHITECTURAL GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

The following architectural guidelines serve to inform the architects, engineers, and associated design professionals of West Los Angeles College's preferred aesthetic quality and character of the future architecture. All new campus architecture should inform, protect, and inspire the students, faculty, and staff. The overall goal is for new campus buildings to be individually expressive while contributing to a cohesive campus environment. All buildings must adhere to local building codes, LEED sustainability guidelines, and ADA requirements. Site constraints, programmatic requirements, budget and schedule shall also be addressed when making key design decisions.

Architectural Principles:
1. Activate interiors of the ground floor.
2. Allow ground floor activities to flow outwardly.
3. Entrances as gathering places.
5. Unified image.

Building Placement
- All new buildings on campus require thoughtful placement in order to enhance existing courtyards and create new ones.
- Location of new structures should strengthen existing pedestrian axes. Compatibility and linkage with adjacent new and existing structures are encouraged where feasible.
- Structures should be appropriately oriented and massed to utilize the site’s inherent natural resources such as sunlight, climate and topography, thereby reinforcing regional sustainable design principles.
- Major building entries and circulation should be sited adjacent to the circulation spine and should provide convenient pedestrian interface and human comfort.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Heights and Massing
• New buildings should vary in height as they step up the hillside, to allow for views to the nearby Baldwin Hills, and to assist in the modulation of long, undifferentiated horizontal elevations.
• The height and massing of new campus buildings should relate to the College’s existing primary architectural structures.
• Building setbacks, cut-outs, decks and balconies should be considered for articulation, scale and creation of visual and physical interaction with adjacent courtyards.
• Asymmetrical building footprints provide for dynamic exterior spaces and, when partially enclosed, make for excellent student gathering spaces.

Windows and Glazing
• Placement and size of openings should maximize daylight and views where applicable. Creating seamless transitions from major interior programmatic elements to courtyards and terraces with glazing is most desirable.
• Significant glazing elements demarcate entry lobbies and vertical circulation zones. Provide large areas of glass for entry, lobby, cafeteria, reading room, and public assembly areas.
• Layering, transparency and fragmentation of architectural elements on a building façade dematerializes the monolithic nature of the building, allowing it to relate to human scale.
• Use of special patterned glazing, fritted, etched and sandblasted glass with colored layers should be considered in adding texture, depth, color and interest in special public areas.
• Appropriately located window openings can offer natural light for interior users and provide orientation in buildings with large floor plates.
• Windows and frames that are flush with the building façade should be avoided unless expressed as a monolithic curtain wall.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Balconies
• Placement of balconies should be considered for maximizing daylighting and views.
• Use of metal, wood and glass as guardrails is acceptable in lieu of primary façade materials.
• Limited access to exterior spaces in the form of decks and balconies is highly desirable for special offices and program elements.

Louvers and Screens
• Use of sunscreens and brise-soleils is critical for shading south and west facing glazing.
• Screens and brise-soleils should use quality materials, be compatible with the building façade and support a maintenance-free existence.
• Screens and louvers may be used purely as architectural elements, e.g. walls, to provide visual screening to undesirable areas.
• When exterior sun screens to mitigate solar heat gain are not an option because of maintenance issues or cost, special low-e coatings, colored glass, synthetic inter-layers, ceramic frit patterns and etching should be considered individually or in combination to obtain the sun control needed to meet LEED standards.
• Exterior screen options include solid panels, vertically oriented and angled to limit direct sunlight, while maintaining directed views. This solid panel system can begin at the second floor level, allowing the ground level unobstructed visual access.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Light Wells
- Skylight design should be considered as an integral aspect of the architectural design.
- Roof-top skylights can add architectural interest and provide needed natural light to upper floors and vertical circulation zones.
- Appropriately designed skylights become nighttime beacons for the campus.
- Utilizing bounced or reflected light from skylights into otherwise unreachable spaces can supplement overall daylighting requirements, reducing electrical loads and cost.

Entry and Lobby Design
- Major building entries should be clearly identifiable and accessible to all.
- Entries can be demarcated by architectural elements such as changes in elevation design such as recesses or protrusions, significant glazing, exterior canopies, or signage and color.
- Entry lobbies illuminated at night become welcoming beacons for students and guests.
- Double-height spaces in building entries and lobbies are preferred when possible.
- Designs should interface closely with the landscape and consider compatible lighting and flooring materials.
- Lobbies should provide ample natural daylight, circulation space, directional information and seating/gathering spaces.
- Use of durable materials for flooring and walls is encouraged.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Stairways and Railings
• Consider vertical expression of interior stairs on building façade.
• Buildings should limit types of stairs and railings to no more than two per building, when possible: a special public stair between major spaces, and secondary exiting stairs.
• Exterior stairways should be designed to complement the architectural statement of the building.
• All new buildings should employ a similar expression for exposed stairways and handrails, e.g., horizontal intermediate open rails, or closed metal screen panel or glass.

Arcades, Walkways, and Canopies
• Exterior circulation corridors designed as integral architectural elements are encouraged wherever possible.
• Arcades provide shelter from the elements while enhancing safety and comfort year-round. These exterior circulation corridors allow for transitional zones between building and landscape.
• Covered or trellised walkways throughout campus should use similar material palettes when possible.
• Trellises and covered walkways should be designed for minimum maintenance. Opportunities for student gatherings, seating and art installations should be considered within or adjacent to walkway areas.
• Canopies for shade and weather protection are desirable throughout the campus. These can be free-standing or attached to buildings and may be composed of glass, metal, precast concrete or synthetics.
• Walkways should be adequately lighted and the edges thoughtfully landscaped.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

MATERIAL GUIDELINES

General Guidelines

• Campus architecture and design should embrace materials that are durable, beautiful, and maintenance-free.
• Materials should be locally produced if possible.
• Materials made from recycled goods and renewable resources are desirable.
• In project planning, it is recommended to look carefully at the life cycle cost of materials before selecting materials of a lesser quality.

Masonry

• Primary building facades will be composed of ceramic tile, concrete masonry units (CMU), or smooth stucco.
• Similar masonry materials and colors may be used for building façade, adjacent walkways and paved courtyards, providing a unified character.
• Variation and modulation within a singular masonry type can and should be considered to reinforce architectural design concepts.
• In a subtle and powerful way, masonry joint style (e.g. rake vs. smooth) and joint color assist in strengthening the overall design.
ARCHITECTURAL GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

MATERIAL GUIDELINES Cont’d

Metal
• Metals may be used as accent material or primary building skin material.
• Building elements to consider include windows and door frames, stairs and rail systems, ceilings, roofs, canopies, trellises, sun screens, louvers, fences, scrim walls and signage.
• Natural coated finish is preferred over painted finishes. If painting is necessary, hot-dipped galvanizing is recommended prior to painting.
• Green screen, a prefabricated three-dimensional grid system comprised of coated metal wire, can be used for growing vines and plants against building surfaces.

Glass
• In order to reduce heat gain and glare, all windows should be low-e, double-pane glass.
• Glass color should be light blue, green, or gray, unless colored interlayers or frit patterns are used. Mirrored or darkened glass is not desirable for use on campus.
II. LANDSCAPE GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

The following sets standards for landscaped open spaces. These guidelines reinforce the natural landscape of the region while providing the campus with its own unique character. This concept is achieved through the interaction of formal and informal spaces that are organized along the College’s main circulation axes and the connection of its urban edge to the hills at its eastern perimeter. Throughout the campus, the plant palette will support the interaction of formality and informality and strengthen the major pedestrian axes.

TREE SPECIES

1. **Approach:** College Boulevard
 a. Washingtonia robusta, *Mexican Fan Palm*
 b. Phoenix dactylifera, *Date Palm*

2. **Ring Road:** Freshman Drive, Sophomore Drive
 a. Pinus halepensis, *Aleppo Pine*

3. **Ring Road Interior Zone:** Albert Vera Drive, ‘B’ Street (South of Albert Vera Drive)
 a. Platanus racemosa, *Sycamore*
 b. Platanus acerifolia, *London Plane*

4. **Frontage:** ‘B’ Street (North of Albert Vera Drive), ‘E’ Street, ‘F’ Street
 a. Populus: Poplar, Aspen, or Cottonwood
 b. Pyrus calleryana, *Callery Pear*

5. **Campus Core:** President’s Lane, WLAC Plaza, Leifer Mall, Graduation Lawn, etc.
 a. Cercidium floridum, *Palo Verde*
 b. Jacaranda mimosifolia, *Jacaranda*
 c. Eucalyptus citriodora, *Lemon-Scented Gum*
 d. Cinnamomum camphora, *Camphor*
 e. Podocarpus gracilior, *Fern Pine*
 f. Geijera Parvifolia, *Austrian Willow*
 g. Olea europaea, ‘Swan Hill’ Fruitless Olive
LANDSCAPE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

TREE SPECIES Cont’d

6. Screen Tree
 a. Hymenosporum flavum, *Sweet Shade*
 b. Schinus Molle, *California Pepper Tree*
 c. Magnolia grandiflora, *Southern Magnolia*

7. Screen Shrubs
 a. Bamboo
 b. Hemerocalus hybrid, *Day Lily*
 c. Acacia cultriformis, *Knife Acacia*
 d. Prunus caroliniana, *Carolina Laurel Cherry*
 e. Myrtus Communis compacta, *Dwarf Myrtle*
 f. Podocarpus gracilior, *Fern Pine*
 g. Ficus nitida, *Evergreen Hedge*
 h. Prunus caroliniana, *Carolina Laurel Cherry*

8. Backdrop
 a. Quercus lobata, *Valley Oak*
 b. Pinus canariensis, *Canary Island Pine*
PLANT SPECIES

1. Ground Cover & Vines
 a. Trachelospermum Jasminoides, Star Jasmine
 b. Achillea, Yarrow
 c. Baccharis Pilularis, Dwarf Coyote Bush
 d. Bougainvillea
 e. Festuca Ounaglauc, Blue Fescue
 f. Festuca Rubra, Red Fescue
 g. Rosmarinus Prostratus, Trailing Rosemary
 h. Gazania
 i. Pelargonium, Geranium
 j. Lantana, Trailing Lantana
 k. Tulbaghia

2. Succulents
 a. Crassillia
 b. Aeonium
 c. Agave Attenuata
 d. Senecio
 e. Aloe Arborescens
 f. Agave Vilmoriana, Octopus Agave

3. Shrubs & Perennials
 a. Alyogyne Huegelii, Blue Hibiscus
 b. Dietes, Fortnight Lily
 c. Anigozanthos, Kangaroo Paw
 d. Lavandula, Lavender
 e. Leptospermum, New Zealand Tea Tree
 f. Mahonia
 g. Punica Granatum, Pomegranate
 h. Salvia
 i. Rosa, Rose
 j. Phormium, New Zealand Flax
 k. Lobelia Laxiflora, Lobelia
III. HARDSCAPE GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Hardscape elements help define outdoor rooms and accommodate pedestrian and vehicular traffic. Different levels of paving type correspond to material used for pedestrian walkways and vehicular access lanes (for fire, emergency, or service). The levels represent standard (Level 1), medium (Level 2), and enhanced (Level 3) paving material. The use of Levels 2 & 3 will be limited to further define areas of importance.

Concrete is the primary material for the campus’ pedestrian walkways. This material can be designed in a variety of ways to emphasize a main circulation area, high activity space, or a focal feature. Decomposed granite (DG) is a compacted, permeable surface that is environmentally safe. DG can provide contrast, create an informal spatial quality, or respond to a building’s architectural vocabulary. Non-toxic stabilizers are to be used to bind DG and produce a firm surface.

Hardscape will meet the following requirements: 1) pedestrian paths that are also designated fire lanes must meet local fire code requirements, including minimum widths, and 2) all pedestrian walkways will be in compliance with ADA requirements.

<table>
<thead>
<tr>
<th>PAVING TYPES</th>
<th>SITE FURNITURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>All outdoor seating and amenities chosen for a particular area shall be uniform in color and finish.</td>
</tr>
<tr>
<td>- Natural concrete, 4” Depth</td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td></td>
</tr>
<tr>
<td>- Natural Concrete & Aggregate</td>
<td></td>
</tr>
<tr>
<td>- Striped Concrete Pattern</td>
<td></td>
</tr>
<tr>
<td>- Striped Concrete & Aggregate Pattern</td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td></td>
</tr>
<tr>
<td>- Concrete Pavers</td>
<td></td>
</tr>
<tr>
<td>Fire Lanes</td>
<td></td>
</tr>
<tr>
<td>- Integral Colored Concrete, 6” Depth</td>
<td></td>
</tr>
<tr>
<td>Secondary Pathways</td>
<td></td>
</tr>
<tr>
<td>- Decomposed Granite</td>
<td></td>
</tr>
</tbody>
</table>
IV. ARTS & EDUCATIONAL OPPORTUNITIES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

LANDSCAPE EDUCATION

Specimen plants around campus, or in high-traffic public spaces, should be labeled with plant species and common name.

The diverse topographical forms which define the campus require specialized planting types. Steep hillsides, small gardens, groves of trees, and open fields each demonstrate the relationship between land forms and plant life.

As funding permits, a botanical garden could be a great asset to the campus landscape.

PUBLIC ART

In addition to two-dimensional painting and freestanding sculpture, other types of artwork that might be considered are earthworks, sound-related art pieces, mixed media, murals or reliefs, kinetic art, poetry, video and electronic images, as well as architecture or landscape elements designed as special focus pieces.

Art works should be placed along major circulation corridors in order to maximize visibility. Designated pedestrian art paths should also be considered.

Interior framed artworks should be hung and illuminated on smooth plaster/gypsum wall board walls or fabric covered walls. Hanging painting on masonry walls is not recommended, as it can compete with course lines and joints.

Overhead, indirect, natural light is preferable to artificial light in most cases.

Valuable works of art should be securely fastened to their walls or stands and protected with cameras and alarms.

A curatorial program should be in place and funded prior to extensive collecting or placement of art pieces.

Annual art competitions or student exhibitions can be a great source of community involvement.
V. SUSTAINABILITY GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

Sustainable Landscape strategies to be implemented on site should include but not be limited to:

1. All landscape and site design shall adhere to LEED standards for sustainability.
2. Site design shall implement storm water mitigation design per Standard Urban Storm Water Mitigation Plan (SUSMP).
3. Use of drought-tolerant, diverse and native California plant species is highly recommended.
4. High-performance automatic irrigation systems should be designed to use the minimum necessary water, and be maintained to prevent waste and leaks.
5. Grey water from the College should be captured and used to water landscaped areas.
6. Provide “green roofs” (vegetated roofs) where possible.
7. Green wastes and (some food waste) should be composted for soil amendment/supplement.
8. Provide well networked/connected pedestrian/bicycle paths that work with local public transportation.
9. Track long term actual cost, benefits and impacts of responsible environmental planning and sustainability.
10. Inspire a culture of responsible environmental practices throughout the planning, design, build, and maintenance phases of all projects.
VI. LIGHTING GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

The lighting information that follows is for schematic purposes only. The purpose is to show the spirit of lighting and how it relates to the overall campus design vocabulary.

Implementation of the lighting fixtures within, strategies, calculations and placement of lighting will need to be commissioned and developed at a later design phase. At that time, more specific information can be provided to develop these concepts forward to the level required for construction.

Design guidelines also include a “Choreographical” basis for lighting systems. The guidelines also provide quantitative standard illumination levels for safety and lighting issues related to “Leadership in Energy and Environmental Design” (LEED) criteria. The guidelines describe the approved campus standard fixtures, lamping, and additional lighting techniques that may be useful to West Los Angeles College (WLAC).

CHOREOGRAPHY

Lighting choreography is the use of light and absence of light to create a sequence of visual events that informs, directs, and satisfies the eye. Human beings are phototropic—we move towards light. This phenomenon can be used to lead people through desired sequences of visual “events” and direct their attention toward key features. Light intensity, color, its location, and hierarchy of scale should be used to create a balanced and inviting composition. Well-executed choreography allows for quick orientation, ease of identifying destination points, increased safety and enjoyment of the surrounding landscaped and built environment.
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

LIGHT LEVELS

IES Recommended Levels

Illumination levels on the Campus shall meet the Illuminating Engineering Society of North America’s (IESNA) recommended standards of practice. The tables below summarized these recommendations (from the IESNA Handbook, Ninth Edition 2000).

Additionally, critical vertical surfaces, and key decision-making points should be illuminated to a higher level than their adjacent spaces. For instance, at the intersection of two walkways, the light level should be twice that of the individual walkway’s average illuminances.

Lighting for Safety

Safety is of primary concern at the College. The current lighting on Campus is inadequate. Many areas are lit below IES standards. Poor placement and inadequate shielding of wall packs create disability glare making identification of people difficult. The future lighting system shall provide a more uniform light level that meets the minimum averages recommended by the IES. Fixture shall be shielded to eliminate glare. Sidewalk edges and adjacent lawn areas shall be illuminated to increase the sense of safety and simultaneously deter potential perpetrators. Illumination of vertical surfaces will further increase the sense of safety on campus.
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

LEED COMPLIANCE

WLAC is striving for a LEED Certification. LEED Credit 8 covers Exterior Illumination. See the US Green Building Council’s (USGBC) website (www.usgbc.org) for additional information. Below is a summary of the LEED Exterior Illumination Criteria.

Exterior luminaires with more than 1000 watts shall be shielded and luminaires with more than 3500 lumens shall be Full Cutoff IESNA Classification. Additionally, all fixtures within a distance of 2.5 times the mounting height from the property boundary shall have shielding such that no light from that luminaire crosses the property boundary.

Lamps that may be used in unshielded, shielded and full cutoff applications are listed in the adjacent table.
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

FIXTURES

Aesthetic
WLAC has selected a campus standard pedestrian pole, parking/roadway pole and a wall mounted fixture all from the Cooper “Invue” line. The approved fixtures, depicted in the below figure are as follows: 1) Pedestrian — “Mesa”, 2) Parking/Roadway — “Icon”, 3) Building Mounted Wall Pack — “Entri”. Additionally, a low level bollard, a high mast with multiple fixture heads, and a LED uplight has been added to the fixture family to allow for a variety of available lighting techniques.

LEGEND

HWA Manufacturer: Cooper Invue
 Style: “Entri”

HBA Manufacturer: Thorn
 Style: “Promenade”

HNA Manufacturer: Cooper Invue
 Style: “Mesa”

HNB Manufacturer: Cooper Invue
 Style: “Icon”

HNC Manufacturer: Cooper Lumiere
 Style: “Monaco”
 Aluminum Pole Manufacturer: Valmont

LUA Ingrade LED Uplight
 Manufacturer & Style: TBD
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

FIXTURES Cont’d

Scale & Hierarchy
In order to create scale and hierarchy within the fixture family, fixtures range in height and mass. The use of pedestrian poles will be confined to the main north-south and east-west axis. Low-level bollards will be used on secondary pathways and stairways. High mast poles with multiple adjustable fixture heads tucked into landscape provide a covert way to downlight plazas, terraces, green spaces and infill paths as needed.

Materials & Finish
The campus’ proximity to the ocean dictates that the best possible quality of materials and finishes be used in the fabrication of fixtures. Salt air means the equipment will be exposed to a highly corrosive environment. Marine Grade Aluminum shall be used with a clear anodizing of all extruded and spun aluminum parts. All parts shall be finished with powdercoat paint.

Maintenance Characteristics
The maintenance characteristics of the standard pedestrian and roadway/parking fixtures are as follows:
- The “Mesa reflector module features toolless removal, quick disconnect wiring and field rotatable optics in 90 degree increments.
- Ballast and related electrical components are mounted to a one-piece tray that may be removed without tools
- The “Icon” Parking/Roadway pole fixture features toolless entry of the doorframe assembly and a one-piece ballast tray that can be accessed and removed without the use of tools. An integral handle ensures safe removal when disengaging and transporting the tray.
- The “Mesa” Fixture carries an IP (Ingress Protection) Rating of IP66, meaning it is completely dust tight and protected from moisture ingress when subjected to heavy spray from any direction. The “Icon” carries and IP rating of 65, meaning it is completely dust tight and protected from moisture ingress from water jets from any direction.

Lamping
The pathway, roadway/parking, and high mast downlighting should utilize cool lamps with a color temperature of 4000K to 4200K while building attached and building interior lighting shall utilize warm lamps with a color temperature of 3000K. This contrast will reinforce the sense of warm building interiors and exterior courtyards and gathering spaces against coolly lit circulation spines. The cool light plays well off of green plant materials where these fixtures typically occur. The primary lamp used on campus will be ceramic metal halide, which has a very high Color Rendering Index (CRI) of 85 for the 3000K “warm” lamp to 92 for the 4000K “cool” lamp. The Color Rendering Index measures the lamps’ ability to render true colors of materials. As an example, incandescent, which is a full spectrum source, has a CRI of 100. Compact fluorescent lamps in the appropriate color temperature may also be used where the lower wattage is needed to meet LEED requirements. Care should be taken to standardize and limit the number of lamp types used for maintenance purposes.
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

FIXTURES Cont’d

HBA - Promenade
Manufacturer: Thorn
(note - luminous top cone to be replaced with solid flat cap)

HNB - Icon
Manufacturer: Cooper Invue

HNC - Monaco
Manufacturer: Cooper Lumiere
Aluminum Pole Manufacturer: Valmont

HWA - Entri
Manufacturer: Cooper Invue

HNA - Mesa
Manufacturer: Cooper Invue

LUA - TBD
Manufacturer: TBD
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

FIXTURES Cont’d

Spacing
Fixtures shall be spaced to meet the IES required light levels for the pathway, road or parking light that they are lighting. For the WLAC campus, this equates to an approximate spacing of 70’ o.c. for the “Mesa” pole along primary pathways, 30’ o.c. for the bollard along secondary pathways and 85’ to 100’ o.c. spacing for the “Icon” along roadways, depending on the width of the road. Calculations shall be performed to assure compliance with the IES standards.

LEED Compliance
Both the “Mesa” and the “Icon” parking/roadway poles are IESNA full cutoff luminaires, which meet the LEED Credit 8 Criteria. The bollard is a shielded fixture and shall be fitted with a lamp that has fewer than 3500 lumens. High mast adjustable fixture heads must have a long snoot to shield the lamp and be spot welded in the down position. They must also be fitted with a lamp with less than 3500 lumens. Any uplights must be less than 1000 lumens.

Emergency
The “Mesa” and “Icon” fixtures both have quartz restrike and battery backup options that can provide exterior egress illumination in the event of a power outage.

LIGHTING TECHNIQUES

Pathway Illumination
Illumination of the primary north-south and east-west pathways will be achieved mainly through pole lighting. Infill lighting may also be achieved through lighting from building overhangs, illumination of structural/architectural elements that are adjacent to pathways, or downlighting from multithreaded high mast units.

Stairway Illumination
Because most of the campus stairs do not have walls within which to mount steplights, low level bollards shall be used at the top and bottom of the stairway and in between as required to meet the IES recommended illumination level. The proposed bollard is approximately 9 ¾” in diameter and would require a concrete pad for mounted adjacent to the cheek wall of the stair.

Façade Illumination
Façade illumination plays a highly critical role in the lighting choreography of the WLAC campus. Building facades at critical terminal vistas shall be illuminated as indicated on the choreography document. Illuminated facades will also form the edges of primary exterior corridors, courtyards, and green spaces. External lighting of building surfaces should be limited to those materials that are diffuse or matte. Glossy or shiny surfaces should not be illuminated due to their glare potential. Façade illumination shall be primarily from fixed downlight sources. Uplighting is limited to the lamp wattages listed in the above “LEED compliance” section for shielded and un-shielded sources. These low wattage sources will be most effective at illuminated low level walls and “bands” of architecture that are low to the ground.
LIGHTING GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

LIGHTING TECHNIQUES Cont’d

Façade Illumination Cont’d
This technique can be effective in anchoring a building visually to the ground, as well as creating a backdrop for sculptural planting. “Shielded” sources of uplight must have a shielding mechanism either integral to the fixture or provided by an architectural overhang such that the fixtures light distribution do not contribute to light pollution. Glazing elements, such as the corner glass element of the student services shall be lit internally and will act as warm “lanterns” when experienced from the exterior.

Building Entries
All building entries shall be illuminated to a higher level than the adjacent façade. Effective illumination of interior vertical surfaces at entry points can achieve this goal where glazing is the primary material at the building entry. Such lighting shall adhere to the LEED criteria for interior illumination. (Criteria may be found at www.usgbc.org)

Landscape Illumination
Downlighting or “moonlight” through trees is a viable technique as long as the fixtures are “fixed” in a down position such that they cannot be misaimed to create glare and contribute to light pollution. Illumination of softscaped plazas and lawn areas via spill light from poles, bollards, and façade lighting is critical for the perception of safety. Uplighting of trees is proposed as a way to support the pairing of trees along campus drive and through campus and terrace greens. Uplighting again is limited to those lamps listed in the “LEED Compliance” section of these Guidelines. LED’s present a viable option since they are extremely low maintenance (lamps last approximately 15 years) and have a lumen output below 1000 lumens.

Signage Illumination
Signage illumination shall be integrated into top of the signage piece utilizing a linear fluorescent source. The material on which the information is mounted should be matte in order to minimize glare.

Existing Campus Illumination
Because some of the campus’ original architecture will remain, consideration should be given to upgrading the exterior lighting of these buildings. For example, lighting of the HLRC building currently utilizes very large high wattage uplights to illuminate the façade. This is not a LEED compliant technique as the existing fixtures make a significant contribution to light pollution. A potential alternate technique is to light these façade elements from the top down. Such a technique usually requires multiple fixtures cantilevered off the top of the building. For a tall façade, the cantilever may need to be several feet off the building resulting so structural support will be a consideration.
VII. SIGNAGE GUIDELINES
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

The sign program for West Los Angeles College has been developed to provide directional and identification information to visitors, students, and staff. The design features a vertical monument form supporting a sign panel. Sign text is vinyl copy for changeability. A variation of the College color palette will be used for sign panels, providing continuity with College identity. The type style is Futura Bold Condensed. This font is ADA-approved and provides maximum visibility and legibility for all users. The condensed form allows for longer messages and larger copy sizes.

Signs are to be located at key decision and identification points for vehicular and pedestrian traffic. Type 1 signs mark campus entrances. Type 2 signs direct vehicular traffic to the appropriate venue or parking lot. Type 3 signs mark the entrance into parking lots. Type 4 and 5 signs direct and provide information along walkways at decision points throughout campus. Type 6 and 7 signs identify building names. Illustrative descriptions (developed by SKA Design) of the differing signage types are located on the following pages.
SIGNAGE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 1

CONCRETE OR FABRICATED METAL/ALUMINUM

PORCELAIN ENAMEL PANELS WITH VINYL COPY
ALTERNATE:
FABRICATED PAINTED ALUMINUM CABINET WITH VINYL COPY, ARROW AND RULE

WEST LOS ANGELES
COLLEGE
SIGNAGE GUIDELINES Cont’d

(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 2

CONCRETE OR FABRICATED METAL/ALUMINUM

PORCELAIN ENAMEL PANELS WITH VINYL COPY

ALTERNATE:
FABRICATED PAINTED ALUMINUM CABINET WITH VINYL COPY, ARROW AND RULE

↑ Administration
↑ Art Department
↑ Business Department
↑ Facilities Management
↑ Campus Security
↑ Social Sciences
↑ Stadium
↑ Student Union

7'-8"
SIGNAGE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 3

CONCRETE OR FABRICATED METAL/ALUMINUM
PORCELAIN ENAMEL PANELS WITH VINYL COPY
ALTERNATE:
FABRICATED PAINTED ALUMINUM CABINET WITH
VINYL COPY, ARROW AND RULE
SIGNAGE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 4

CONCRETE OR FABRICATED METAL/ALUMINUM

PORCELAIN ENAMEL PANELS WITH VINYL COPY
ALTERNATE:
FABRICATED PAINTED ALUMINUM CABINET WITH
VINYL COPY, ARROW AND RULE
SIGNAGE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 5

CONCRETE OR FABRICATED METAL/ALUMINUM
LOCKABLE DISPLAY CABINET WITH DIGITAL YOU-ARE-HERE MAP
SIGNAGE GUIDELINES Cont’d
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 6

KATHLEEN JOHNSON ALUMNI HALL

BRUSHED METAL LETTERS OR PAINTED BLUE
SIGNAGE GUIDELINES Cont'd
(As Outlined in WLAC Campus Master Plan & Landscape Guidelines, Spring 2010, WWCOT & Ahbe)

SIGN TYPE 7

KATHLEEN JOHNSON ALUMNI HALL